K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2017

a,b,c,d thuộc 1,3,5,7,9

xyz \(⋮\)3 => 1 trong 4 số đó là 3 hoặc 9

xyz \(⋮\)5 => 1 trong 4 số đó là 5

mà a.b.c.d>100 

TH1: a.b.c.d=1.3.5.7=105 => xyz =105 => x.y.z=0=mn (vô lý)

TH2: a.b.c.d=1.3.5.9=135 => xyz =135 => x.y.z=1.3.5=15 (thỏa mãn m,n lẻ)

x+y+z=1+3+5=9 (thỏa mãn r lẻ)

ta có: abcd =1420+9+15+135=1579 (không thỏa mãn phép nhân a.b.c.d)

TH3: a.b.c.d=1.5.7.9=315 => xyz =315 => mn =15 => r=9

=> abcd =1759 (thỏa mãn)

TH4: 3.5.7.9=945....( không thỏa mãn)

Vậy abcd =1759

7 tháng 9 2019

Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath

19 tháng 4 2020

Trả lời :

Tham khảo link này : https://olm.vn/hoi-dap/detail/6401290031.html

- Hok tốt !

^_^

10 tháng 6 2019

Ta có \(\left(12-x\right)\left(12-y\right)\left(12-z\right)\le\frac{\left(36-x-y-z\right)^3}{27}\)

=> \(xyz\le\frac{\left(36-x-y-z\right)^6}{27^2}\)

Mà \(x+y+z\ge3\sqrt[3]{xyz}\)

=> \(xyz\le\frac{\left(36-3\sqrt[3]{xyz}\right)^6}{27^2}\)

<=>\(\sqrt[6]{xyz}\le12-\sqrt[3]{xyz}\)

<=> \(\sqrt[6]{xyz}\le3\)

=> \(xyz\le729\)

Vậy Max xyz=729 khi x=y=z=9

9 tháng 6 2019

Thêm cái nữa là chỉ dùng BĐT AM-GM (Cô si) thôi nhé mn!

Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:Bài 1,cho a,b,c là các số dương . Tìm GTNN của :a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:                            \(A=\frac{x+y}{xyz}\)         b, cho các số dương x,y,z,t có...
Đọc tiếp

Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:

Bài 1,cho a,b,c là các số dương . Tìm GTNN của :

a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)

b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)

Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:

                            \(A=\frac{x+y}{xyz}\)

         b, cho các số dương x,y,z,t có tổng bằng 2. Tìm GTNN của 

                           \(B=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

Bài 3 : Tìm GTNN của \(A=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)biết rằng \(x,y,z\) là các số dương và \(x^2+y^2+z^2\le3\)

Bài 4:  a, Tìm GTLN của tích xy với x,y là các số dương, \(y\ge6\)và \(x+y=100\)

          b, Tìm GTLN của tích xyz với x,y,z là các số dương,\(z\ge6\)và \(x+y+z=100\)

2
18 tháng 7 2016

Bài 1:a,

A=a/b+c + b/a+c + c/a+b = a^2/ab+ac + b^2/ab+bc + c^2/ac+bc 

Áp dụng BĐT dạng Angel : A > hoặc = (a+b+c)^2/ab+ac+ab+bc+ac+bc=(a+b+c)^2/2(ab+bc+ca) > hoặc = 3(ab+bc+ca)/2(ab+bc+ca)=3/2 

b,làm tt câu a 

18 tháng 7 2016

câu 1 của bạn chính sác đấy

6 tháng 2 2017

1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)

\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm 

2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)

tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1

3) kiểm tra lại xem đề đã chuẩn chưa

4 tháng 9 2016

Ta có : x3 + xyz = x(x2+yz)=957 là số lẻ => x là số lẻ

Tương tự: y, z cũng là số lẻ

Do đó : x3 là số lẻ, xyz là số lẻ ( vì x,y,z là số lẻ)

Nên : x3 + xyz là số chẵn ( trái với đề bài)

Vậy: ko có các số nguyên x,y,z nào đồng thời thỏa mãn 3 đẳng thức trên