Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4^{20}}{6^{20}}-\frac{2^{20}}{3^{20}}+\frac{6^{20}}{9^{20}}=\left(\frac{2}{3}\right)^{20}-\left(\frac{2}{3}\right)^{20}+\left(\frac{2}{3}\right)^{20}=\left(\frac{2}{3}\right)^{20}\)
45^10*5^20/75^15
=5^10*9^10*5^20/(5^2)^15
=5^10*5^20*9^10/5^30
=9^10
(0.8)^5/(0.4)^6
=(0.4)^5*2^5/(0.4)^6
=2^5/(0.4)
=32/(0.4)
=80
2^15*9^4/6^6*8^3
=2^15*(3^2)^4/2^6*3^6*(2^3)^3
=2^15*3^8/2^6*3^6*2^9
=3^2
=9
\(a=4^5.9^4-2.\dfrac{6^9}{2^{10}}.3^8+6^8.20\)
Đề là như vầy đúng ko bn?
=\(\frac{5^4.20^5}{25^4.4^3}\)
=\(\frac{5^4.\left(2^2.5\right)^5}{\left(5^2\right)^4.\left(2^2\right)^3}\)
=\(\frac{5^4.2^{10}.5^5}{5^8.2^6}\)
=\(\frac{5^9.2^{10}}{5^8.2^6}\)
=\(\frac{5.2^4}{1.1}\)
=\(\frac{80}{1}\)
=80
\(A=\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\)
\(2A=1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\)
\(2A-A=\)\(\left(1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\right)-\)\(\left(\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\right)\)
\(A=1-\left(\frac{1}{2}\right)^{20}\)
a)\(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{5^{10}.3^{20}.5^{20}}{3^{15}.5^{30}}=\dfrac{5^{30}.3^{20}}{3^{15}.5^{30}}=3^5\)
Các câu sau tương tự
Đặt \(A=2^2+4^2+6^2+...+20^2\) ta có:
\(A=2^2\left(1^2+2^2+3^2+...+10^2\right)\)
\(=4.\frac{10\left(10+1\right)\left(2.10+1\right)}{6}\)
\(=4.385=1540\)