K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2018

a)\(x^2+6xy+9y^2=\left(x+3y\right)^2\)

b)\(\left(a-2b^2\right)^2=a^2-4ab^2+4b^4\)

c)\(\left(m+\dfrac{1}{2}\right)^2=m^2+m+\dfrac{1}{4}\)

d) \(m^2-4n^4=\left(m-2n^2\right)\left(m+2n^2\right)\)

Nếu bạn cần cách làm chi tiết nhắn tin với mình , mình sẻ chỉ cho

8 tháng 9 2017

a) x2+6xy+3y2=(x+3y)2

b) (a-2b2)2=a2-2.a.2b2+4b4

c) (m+1/2)2=m2+m+1/4

d)m2-4n4=(m+2n2)(m-2n)2

Thế nhé!!! Đảm bảo chính xác 100%. Khi nào có bài gì khó m đăng nhớ jup !!! :V

21 tháng 9 2017

a)x2+6xy+9y2=(x+3y)2

b)(a-2b)2=a2-4ab+4b2

c)(m+\(\dfrac{1}{2}\))2=m2+m+\(\dfrac{1}{4}\)

d)m2-4n2=(m-2n)(m+2n)

3 tháng 9 2017

a) (a - 2b)2 = a2 - 2.a.2b + 4b2

                  = a2 - 4ab + 4b2

b) m2 - 4n2 = m2 - (2n)2 = (m - 2n)(m + 2n)

3 tháng 9 2017

. Bài 1:
a; 9m^2 + n^2 - 6mn
= (3m)^2 - 2.3m.n + (n)^2
= ( 3m-n )^2
b; x^2-x+1/4
= x^2-2.(x).1/2+(1/2)^2
= (x-1/2)^2

11 tháng 2 2017

Bài giải:

a) x2 + 2 . x . 3y + … = (…+3y)2

x2 + 2 . x . 3y + (3y)2 = (x + 3y)2

Vậy: x2 + 6xy +9y2 = (x + 3y)2

b) …-2 . x . 5y + (5y)2 = (… - …)2;

x2 – 2 . x . 5y + (5y)2 = (x – 5y)2

Vậy: x2 – 10xy + 25y2 = (x – 5y)2

11 tháng 2 2017

Bài giải:

a) x2 + 2 . x . 3y + … = (…+3y)2

x2 + 2 . x . 3y + (3y)2 = (x + 3y)2

Vậy: x2 + 6xy +9y2 = (x + 3y)2

b) …-2 . x . 5y + (5y)2 = (… - …)2;

x2 – 2 . x . 5y + (5y)2 = (x – 5y)2

Vậy: x2 – 10xy + 25y2 = (x – 5y)2

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

a)

\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)

\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)

\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)

\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)

Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)

b)

Xét hiệu

\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)

\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)

Dấu "=" xảy ra khi $x=y$

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

c)

Xét hiệu:

\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)

\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)

\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)

\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)

Dấu "=" xảy ra khi \(ad=bc\)

d)

Xét hiệu:

\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)

\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)

\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)

\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

7 tháng 8 2018

c)\(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)

d)\(\dfrac{a^2}{4}-2a+4=\left(\dfrac{a}{2}-2\right)^2\)

e) \(4y^2-9x^2=\left(2y-3x\right)\left(2y+3x\right)\)

f)\(9y^2-\dfrac{1}{4}=\left(3y-\dfrac{1}{2}\right)\left(3y+\dfrac{1}{2}\right)\)

g)\(8x^3+8a^3=\left(2x+2a\right)\left(4x^2-4xa+4a^2\right)\)

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

10 tháng 7 2019

1,

\(\left(\frac{2}{3}x+y\right)^2=\left(\frac{2}{3}x\right)^2+2.\frac{2}{3}x.y+\left(y\right)^2=\frac{4}{9}x^2+\frac{4}{3}xy+y^2\)

\(\left(3a+\frac{1}{2}b\right)^2=\left(3a\right)^2+2.3a.\frac{1}{2}b+\left(\frac{1}{2}b\right)^2=9a^2+3ab+\frac{1}{4}b^2\)

2,

\(25a^2+4b^2+20ab=\left(5a\right)^2+\left(2b\right)^2+2.5a.2b=\left(5a+2b\right)^2\)

\(x^2+2x+1=\left(x\right)^2+2.x.1+\left(1\right)^2=\left(x+1\right)^2\)

\(9x^2+6x+1=\left(3x\right)^2+2.3x.1+\left(1\right)^2=\left(3x+1\right)^2\)

\(\left(2x+3y\right)^2+2.\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)

10 tháng 7 2019

\(1,\left(\frac{a}{3}+4y\right)^2=\frac{a^2}{9}+\frac{8ay}{3}+16y^2\)

\(2,\)Bạn xem lại đề bài giùm mk nhé

\(\left(x^2+\frac{2}{5}y\right).\left(x^2-\frac{2}{5}y\right)=\left(x^2\right)^2-\left(\frac{2}{5}y\right)^2=x^4-\frac{4}{25}y^2\)

21 tháng 8 2017

\(e,\)

\(\left(\dfrac{1}{3}a^3b+\dfrac{1}{3}a^2b^2-\dfrac{1}{4}ab^3\right):5ab\)

\(=\dfrac{1}{15}a^2+\dfrac{1}{15}ab-\dfrac{1}{20}b^2\)

\(f,\)

\(\left(-\dfrac{2}{3}x^5y^2+\dfrac{3}{4}x^4y^3-\dfrac{4}{5}x^3y^4\right):6x^2y^2\)

\(=-\dfrac{1}{9}x^3+\dfrac{1}{8}x^2y-\dfrac{2}{15}xy^2\)

\(g,\)

\(\left(\dfrac{3}{4}a^6b^3+\dfrac{6}{5}a^3b^4-\dfrac{5}{10}ab^5\right):\left(\dfrac{3}{5}ab^3\right)\)

\(=\dfrac{5}{4}a^5+2a^2b-\dfrac{5}{6}b^2\)

21 tháng 8 2017

cam on