Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(B=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\)
Áp dụng bất đẳng thức: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{\left(a+b\right)^2}\), ta có:
\(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+2xy+y^2}=\dfrac{4}{\left(x+y\right)^2}=\dfrac{4}{1^2}=4\)
\(\Rightarrow B\ge4\)
Ta có:
\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow1\ge4xy\)
\(\Leftrightarrow\dfrac{1}{2xy}\ge\dfrac{4xy}{2xy}=2\) (x,y>0)
Khi đó:
\(A=B+\dfrac{1}{2xy}\ge4+2=6\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(x=y=\dfrac{1}{2}\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\\ =\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{2}{4xy}\\ \overset{AM-GM}{\ge}\dfrac{4}{x^2+y^2+2xy}+\dfrac{2}{\left(x+y\right)^2}\\ =\dfrac{4}{\left(x+y\right)^2}+\dfrac{2}{\left(x+y\right)^2}=4+2=6\)
Dấu "=" xảy ra khi \(:\left\{{}\begin{matrix}x^2+y^2=2xy\\x=y\end{matrix}\right.\Leftrightarrow x=y\)
Vậy \(A_{Min}=6\) khi \(x=y\)
Áp dụng bất đẳng thức cô si ta có :\(x^2+y^2\ge2xy=2\)
\(\Rightarrow\left(x+y+1\right)\left(x^2+y^2\right)\ge2\left(x+y+1\right)=2\left(x+y\right)+2\)
\(\Rightarrow A\ge2\left(x+y\right)+2+\dfrac{4}{x+y}=\left(x+y+\dfrac{4}{x+y}\right)+\left(x+y\right)+2\)
Tiếp tục áp dụng bất đẳng thức cô si ta có :
\(A\ge2\sqrt{\left(x+y\right).\dfrac{4}{\left(x+y\right)}}+2\sqrt{xy}+2=4+2+2=8\)
Dấu "=" xảy ra khi :\(x=y=1\)
Vậy min của \(A=\left(x+y+1\right)\left(x^2+y^2\right)+\dfrac{4}{x+y}\) là 8 khi \(x=y=1\)
Điều đầu tiên ta cần chứng minh được BĐT :
\(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow2x+2y+2z\ge2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}\)
\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\) ( Đúng )
\(\Rightarrow x+y+z\ge1\)
Áp dụng BĐT Cauchy - schwarz dưới dạng en-gel ta có :
\(A=\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{z+x}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{1}{2}\)
Vậy \(Min_A=\dfrac{1}{2}\) . Dấu \("="\) xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Bài 1. Ta có : \(xy+\dfrac{1}{xy}=16xy-15xy+\dfrac{1}{xy}\)
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(x+y\) ≥ \(2\sqrt{xy}\)
⇔ \(\left(x+y\right)^2\) ≥ \(4xy\)
⇔ \(\dfrac{\left(x+y\right)^2}{4}=\dfrac{1}{4}\) ≥ xy
⇔ - 15xy ≥ \(\dfrac{1}{4}.\left(-15\right)=\dfrac{-15}{4}\)
CMTT , \(16xy+\dfrac{1}{xy}\) ≥ \(2\sqrt{16xy.\dfrac{1}{xy}}=2.\sqrt{16}=8\)
⇒ \(16xy+\dfrac{1}{xy}\) - 15xy ≥ \(8-\dfrac{15}{4}=\dfrac{17}{4}\)
ta có : \(\left(x+y-1\right)^2=xy\Leftrightarrow x^2+y^2+xy-2x-2y+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+xy-1=0\)
\(0=\left(x-1\right)^2+\left(y-1\right)^2+xy-1\ge xy-1\)
\(\Leftrightarrow xy\le1\)
mà \(xy=\left(x+y-1\right)^2\le1\Leftrightarrow-1\le x+y-1\le1\)
\(\Leftrightarrow0\le x+y\le2\).
\(VT=\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{\sqrt{xy}}{x+y}\)
Áp dụng bất đẳng thức cauchy dạng phân thức:
\(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\ge\dfrac{4}{\left(x+y\right)^2}\ge\dfrac{4}{4}=1\)(*)
vì \(xy\le1\)nên \(\sqrt{xy}\ge xy\)( đúng vì nó tương đương \(\sqrt{xy}\left(1-\sqrt{xy}\right)\ge0\))
\(\Rightarrow\dfrac{1}{2xy}+\dfrac{\sqrt{xy}}{x+y}\ge\dfrac{1}{2\sqrt{xy}}+\dfrac{\sqrt{xy}}{2}\)( vì \(x+y\le2\))
Áp dụng bất đẳng thức cauchy: \(\dfrac{1}{2\sqrt{xy}}+\dfrac{\sqrt{xy}}{2}\ge2\sqrt{\dfrac{1}{2\sqrt{xy}}.\dfrac{\sqrt{xy}}{2}}=1\)(**)
từ (*) và (**) ta có \(VT\ge1+1=2\)
đẳng thức xảy ra khi x=y=1
\(M=\dfrac{1}{x^{2}+y^{2}}+\dfrac{1}{xy} \\=(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy})+\dfrac{1}{2xy}\\ \)
\(\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2.\left(\dfrac{x+y}{2}\right)^2}=\dfrac{4}{1^2}+\dfrac{1}{2.\left(\dfrac{1}{2}\right)^2}=6\)
Dấu "=" xảy ra<=>x=y=0,5.
\(M=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=6\)
\(\Rightarrow M_{min}=6\) khi \(x=y=\dfrac{1}{2}\)