\(\widehat{B}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

neu ai tra loi dung cho minh trong may tieng nay to k cho1 nink

16 tháng 10 2017

Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [C, B] Đoạn thẳng m: Đoạn thẳng [E, H] Đoạn thẳng n: Đoạn thẳng [F, H] Đoạn thẳng p: Đoạn thẳng [A, H] Đoạn thẳng q: Đoạn thẳng [A, M] A = (-1.98, 1.26) A = (-1.98, 1.26) A = (-1.98, 1.26) C = (7.12, 1.2) C = (7.12, 1.2) C = (7.12, 1.2) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm H: Giao điểm đường của j, i Điểm H: Giao điểm đường của j, i Điểm H: Giao điểm đường của j, i Điểm E: Giao điểm đường của k, h Điểm E: Giao điểm đường của k, h Điểm E: Giao điểm đường của k, h Điểm F: Giao điểm đường của l, f Điểm F: Giao điểm đường của l, f Điểm F: Giao điểm đường của l, f Điểm M: Trung điểm của B, C Điểm M: Trung điểm của B, C Điểm M: Trung điểm của B, C

a) Xét tam giác AEH và tam giác AHB có:

\(\widehat{AEH}=\widehat{AHB}=90^o\)

Góc A chung

\(\Rightarrow\Delta AEH\sim\Delta AHB\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{AE}{AH}\Rightarrow AE.AB=AH^2\)

Tương tự \(\Delta AHF\sim\Delta ACH\left(g-g\right)\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\Rightarrow AF.AC=AH^2\)

Xét tam giác vuông ABC có AH là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:

\(HB.HC=AH^2\)

Vậy nên ta có AE.AB = AF.AC = HB.HC

b)   Ta có \(\Delta AHC\sim\Delta BAC\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{HC}{AC}\Rightarrow AH.AC=AB.HC\)

\(\Rightarrow AB.AH.AC=AB.AB.HC\Rightarrow\left(AB.AC\right).AH=AB^2.HC\)

\(\Rightarrow BC.AH.AH=AB^2.HC\Rightarrow AH^2.BC=AB^2.HC\)

\(\Rightarrow\frac{AH^2}{AB^2}=\frac{CH}{BC}\Rightarrow\left(\frac{AH}{AB}\right)^2=\frac{CH}{BC}\Rightarrow sin^2B=\frac{CH}{BC}\) 

c) Xét tam giác vuông ABC có AH là đường cao, áp dụng hệ thức lượng trong tam giác ta có :

\(AC^2=HC.BC\)

Lại có AM là đường trung tuyến ứng với cạnh huyền nên BC = 2AM.

Suy ra \(AC^2=HC.2.AM\Rightarrow\frac{1}{AM}=\frac{2HC}{AC^2}\Rightarrow\frac{AH}{AM}=2.\frac{AH}{AC}.\frac{HC}{AC}\)

\(\Rightarrow sin\widehat{AMB}=2.sin\widehat{ACB}.cos\widehat{ACB}\)

23 tháng 8 2020
Câu a)Nhãncâu bNhãn