Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Thay a,b,c lần lượt vào biểu thức...
Tính được kết quả:
a) A= \(-\frac{7}{10}\)
b) B= \(-\frac{2}{7}\)
c) C= 0
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(B=\left(-\dfrac{1}{5}-\dfrac{5}{7}+\dfrac{-3}{35}\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{2}\right)+\dfrac{1}{41}\)
\(=\dfrac{-7-25-3}{35}+\dfrac{3+2+1}{6}+\dfrac{1}{41}=\dfrac{42}{41}-1=\dfrac{1}{41}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{1}{n}\) - \(\frac{1}{n+1}\) = \(\frac{n+1}{n\left(n+1\right)}\) - \(\frac{n}{n\left(n+1\right)}\) = \(\frac{1}{n\left(n+1\right)}\) = \(\frac{1}{n}\) . \(\frac{1}{n+1}\) =>đpcm
b) A= \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\)+...+\(\frac{1}{8}\) - \(\frac{1}{9}\) +\(\frac{1}{9}\)
= \(\frac{1}{2}\) + \(\frac{1}{9}\)= \(\frac{11}{18}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=7(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{61}-\frac{1}{63}) \)
\(S=7(\frac{1}{3}-\frac{1}{63})\)
\(S=7(\frac{21}{63}-\frac{1}{63}) \)
\(S=7.\frac{20}{63}\)
\(S=\frac{20}{9}\)
Do đó:\(S<\frac{5}{2}\)
S=\(\frac{2.7}{3.5}+\frac{2.7}{5.7}+\frac{2.7}{7.9}+....+\frac{2.7}{61.63}\)và\(\frac{5}{2}\)
S=7.(\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....-\frac{1}{63}\)) và\(\frac{5}{2}\)
S=7.(\(\frac{1}{3}-\frac{1}{63}\)) và\(\frac{5}{2}\)
S=7.\(\frac{20}{63}\)và\(\frac{5}{2}\)
=>S=\(\frac{20}{9}\)so với \(\frac{5}{2}\)
=>S=\(\frac{40}{18}\)và\(\frac{45}{18}\)
=>S<\(\frac{5}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 :\(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{98}{100}=\frac{1}{100}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình giải ý b bài 1:
\(\dfrac{\dfrac{5}{47}+\dfrac{5}{37}-\dfrac{5}{17}+\dfrac{5}{27}}{\dfrac{75}{47}+\dfrac{75}{27}-\dfrac{75}{17}+\dfrac{75}{37}}\)=\(\dfrac{5\left(\dfrac{1}{47}+\dfrac{1}{37}-\dfrac{1}{17}+\dfrac{1}{27}\right)}{75\left(\dfrac{1}{47}+\dfrac{1}{27}-\dfrac{1}{17}+\dfrac{1}{37}\right)}\)=\(\dfrac{5}{75}=\dfrac{1}{15}\)
\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{96.101}\)
\(S=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{96.101}\right)\)
\(S=5.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\right)\)
\(S=5.\left(\frac{1}{1}-\frac{1}{101}\right)\)
\(S=5.\left(\frac{101}{101}-\frac{1}{101}\right)\)
\(S=5.\frac{100}{101}\)
\(S=\frac{500}{101}\)
4/
a. Ta có:
\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{96.101}=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{96.101}\right)=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\right)=5.\left(1-\frac{1}{101}\right)=5.\frac{100}{101}=\frac{500}{101}\)
Vậy \(S=\frac{500}{101}\)
b.
Ta có:
9999.ab chia hết cho 11
99.ab chia hết cho 11
ab+cd+ef chia hết cho 11
=> 9999.ab+99.cd+(ab+cd+ef) chia hết cho 11
=>10000.ab+100.cd+ef chia hết cho 11
=> abcdef chia hết cho 11
( Bạn tự cho dấu gạch trên đầu nhá)