K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2020

\(3x\left(x-1\right)=x^2\Leftrightarrow3x^2-3x-x^2=0\)

\(\Leftrightarrow2x^2-3x=0\Leftrightarrow x\left(2x-3\right)=0\Leftrightarrow x=0;\frac{3}{2}\)

Đặt bt trên là A nha

Đổi |x-1|=|1-x|

Suy ra A=|1-x|+x-2|+|x-3|

Áp dụng BĐTGTTĐ ta có

A=|1-x|+x-2|+|x-3|\(\ge\)|1-x+x-3|=2

Dấu = xảy ra khi   \(\hept{\begin{cases}x-2=0\\1< x< 3\end{cases}}\)đồng thời xảy ra

Vậy x =2

b,

\(\left|3x+\frac{1}{2}\right|\ge0\)

\(\left|3x+\frac{1}{6}\right|\ge0\)

..........

\(\left|3x+380\right|\ge0\)

Suy ra đề bài \(\ge\)0

 suy ra 58x \(\ge\)0

Suy ra \(3x+\frac{1}{2}+3x+\frac{1}{6}+......+3x+380=58x\)

Tự tính nhé hok tốt

15 tháng 7 2016

a) 23x + 1 = 32x

23x - 32x = -1

-9x = -1

x=-1/-9

x=1/9

b) 3x+2 = 273x-1

3x - 273x = -1 - 2

-270x = -3

x = -3/-270

x=3/270

 
23 tháng 5 2018

a ) 

\(x^2-x+1=0\)

( a = 1 ; b= -1 ; c = 1 )

\(\Delta=b^2-4.ac\)

\(=\left(-1\right)^2-4.1.1\)

\(=1-4\)

\(=-3< 0\)

vì \(\Delta< 0\) nên phương trình vô nghiệm 

=> đa thức ko có nghiệm 

b ) đặc t = x (  \(t\ge0\) )

ta có : \(t^2+2t+1=0\)

( a = 1 ; b= 2 ; b' = 1 ; c =1 ) 

\(\Delta'=b'^2-ac\)

\(=1^2-1.1\)

\(=1-1=0\)

phương trình có nghiệp kép 

\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )   

vì \(t_1=t_2=-1< 0\)

nên phương trình vô nghiệm 

Vay : đa thức ko có nghiệm 

24 tháng 5 2018

2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)

=> \(f\left(x\right)=5x^2-1\)

Khi \(f\left(x\right)=0\)

=> \(5x^2-1=0\)

=> \(5x^2=1\)

=> \(x^2=\frac{1}{5}\)

=> \(x=\sqrt{\frac{1}{5}}\)

Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)

28 tháng 6 2019

\(a,\frac{3x+2}{5x+7}=\frac{3x-1}{5x-1}=\frac{\left(3x+2\right)-\left(3x-1\right)}{\left(5x+7\right)-\left(5x-1\right)}=\frac{3}{8};\frac{3x+2}{5x+7}=\frac{3}{8}\Leftrightarrow24x+16=15x+21\Leftrightarrow9x=5\Leftrightarrow x=\frac{5}{9}\) \(b,\frac{37-x}{x+13}=\frac{3}{7}\Leftrightarrow37.7-7x=3x+39\Leftrightarrow259-7x=3x+39\Leftrightarrow220-7x=3x\Leftrightarrow10x=220\Leftrightarrow x=22\) \(c,\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}=\frac{x+4}{2x+6}=\frac{\left(x+4\right)-\left(x+1\right)}{2x+6-\left(2x+1\right)}=\frac{3}{5};\frac{x+1}{2x+1}=\frac{3}{5}\Leftrightarrow5x+5=6x+3\Leftrightarrow x=2\) \(d,\frac{x-2}{x+2}=\frac{x+3}{x-4}=\frac{\left(x+3\right)-\left(x-2\right)}{\left(x-4\right)-\left(x+2\right)}=\frac{5}{-6};\frac{x-2}{x+2}=\frac{5}{-6}\Leftrightarrow6\left(2-x\right)=5x+10\Leftrightarrow2-6x=5x\Leftrightarrow x=\frac{2}{11}\) \(f,\frac{3x-5}{x}=\frac{9x}{3x+2}=\frac{9x-15}{3x}=\frac{9x-\left(9x-15\right)}{\left(3x+2\right)-3x}=\frac{15}{2};\frac{9x}{3x+2}=\frac{15}{2}\Leftrightarrow18x=45x+30\Leftrightarrow27x+30=0\Leftrightarrow x=\frac{-10}{9}\) \(e,\frac{x+2}{6}=\frac{5x-1}{5}\Leftrightarrow5\left(x+2\right)=6\left(5x-1\right)\Leftrightarrow5x+10=30x-6\Leftrightarrow10=25x-6\Leftrightarrow25x=16\Leftrightarrow x=\frac{16}{25}\)

15 tháng 7 2017

\(\left(3x-1\right)^2+2\left(9x^2-1\right)+\left(3x+1\right)^2\)

\(=9x^2-6x+1+18x^2+2+9x^2+6x+1\)

\(=36x^2+4\)

\(\left(x^2-1\right)\left(x+3\right)-\left(x-3\right)\left(x^3+3x+9\right)\)

\(=x^3+3x^2-x+3-\left(x^4+3x^2+9x-3x^3-9x-27\right)\)

\(=x^3+3x^2-x+3-x^4-3x^2-9x+3x^3+9x-27\)

\(=\left(3x^2-3x^2\right)+\left(9x-9x\right)-x-\left(27-3\right)+x^3-x^4+3x^3\)

\(=-x-24+x^3-x^4+3x^3\)

\(\left(x+4\right)\left(x-4\right)-\left(x-4\right)^2\)

\(=x^2-16-\left(x-4\right)^2\)

\(=x^2-16-x^2+8x-16\)

\(=8x-32\)

18 tháng 10 2018

\(x.5=x^2\)

\(\Rightarrow x^2-5x=0\)

\(\Rightarrow x.\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

Vậy \(x\in\left\{0;5\right\}\)

\(\left(3x-1\right)^{2017}=\left(3x-1\right)^{2018}\)

\(\Rightarrow\left(3x-1\right)^{2018}-\left(3x-1\right)^{2017}=0\)

\(\Rightarrow\left(3x-1\right)^{2017}.\left[\left(3x-1\right)-1\right]=0\)

\(\Rightarrow\left(3x-1\right)^{2017}.\left(3x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(3x-1\right)^{2017}=0\\\left(3x-2\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\3x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=1\\3x=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{1}{3};\dfrac{2}{3}\right\}\)

\(\left(x-1\right)^{x+2}=\left(x-1\right)^x\)

\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^x\)

\(\Rightarrow\left(x-1\right)^x.\left[\left(x-1\right)^2-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^x=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)

Vậy \(x\in\left\{0;1;2\right\}\)

7 tháng 8 2020

\(P\left(x\right)-Q\left(x\right)=\left(-2x+\frac{1}{2}x^2+3x^4-3x^2-3\right)-\left(3x^4+x^3-4x^2+1,5x^3-3x^4+2x+1\right)\\ P\left(x\right)-Q\left(x\right)=-2x+\frac{1}{2}x^2+3x^4-3x^2-3-3x^4-x^3+4x^2-1,5x^3+3x^4-2x-1\\ P\left(x\right)-Q\left(x\right)=\left(-2x-2x\right)+\left(\frac{1}{2}x^2-3x^2+4x^2\right)+\left(3x^4-3x^4+3x^4\right)+\left(-3-1\right)+\left(-x^3-1,5x^3\right)\\ P\left(x\right)-Q\left(x\right)=-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3\)

\(R\left(x\right)+P\left(x\right)-Q\left(x\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)+\left(P\left(x\right)-Q\left(x\right)\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\left(\frac{3}{2}x+x^2\right)+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{5}{2}x^2+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)=2x^3-\frac{3}{2}x+1+4x-\frac{5}{2}x^2-3x^4+4+\frac{5}{2}x^3\\ \Rightarrow R\left(x\right)=\left(2x^3+\frac{5}{2}x^3\right)+\left(\frac{-3}{2}x+4x\right)+\left(1+4\right)-\frac{5}{2}x^2-3x^4\\ \Rightarrow R\left(x\right)=\frac{9}{2}x^3+\frac{5}{2}x+5-\frac{5}{2}x^2-3x^4\)

12 tháng 6 2018

\(a,\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)=9x^2+30x+25+9x^2-30x+25-9x^2+4=9x^2+54\)
\(b,BT=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x=x^3-16x^2+25x\)
\(c,BT=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-z-x-y\right)^2=z^2\)

3 tháng 5 2017

1a)\(M=-2x^3+2x^2y\)

b) \(M=6x^2+xy-x^3+4y^2\)

2a)\(P\left(x\right)+Q\left(x\right)=2x^2-2x\)

\(P\left(x\right)-Q\left(x\right)=4x^2+8x-4\)