![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Thay x = -5 vào phương trình
\(-10m=\frac{1}{2m}+30\Rightarrow-10m-\frac{1}{2m}-30=0\Rightarrow\frac{20m^2-1-60m}{2m}=0\)
\(\Rightarrow20m^2-60m-1=0\Rightarrow20\left(m^2-3m+\frac{9}{4}\right)=46\Rightarrow\left(m-\frac{3}{2}\right)^2=46\)
\(\Rightarrow m-\frac{3}{2}=\sqrt{46}\Rightarrow m=\sqrt{46}+\frac{3}{2}\)
2) Tìm nghiệm của phương trình
\(\left(x+1\right)\left(x-1\right)-\left(x+2\right)=3\), có nghiệm của \(6x-5m=3+3m\) gấp 3 lần, bài toán lại quay trở về giống như bài trên
3.a)\(\Leftrightarrow9x^2+54x-9x^2+6x-1=1\)
\(\Leftrightarrow60x=2\Leftrightarrow x=\frac{1}{30}\)
Vậy pt có tập nghiệm là S=\(\left\{\frac{1}{30}\right\}\).
b)\(\Leftrightarrow32x-16x^2-16x^2+40x-25=2\)
\(\Leftrightarrow-32x^2+72x-27=0\)
\(\Leftrightarrow32x^2-72x+27=0\)
Có: \(\Delta=\left(-72\right)^2-4.32.27=1728\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{72+\sqrt{1728}}{64}\\x_2=\frac{72-\sqrt{1728}}{64}\end{matrix}\right.\)
c) Δ\(=\left(-7\right)^2+4.3=\sqrt{61}\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{7+\sqrt{61}}{6}\\x_2=\frac{7-\sqrt{61}}{6}\end{matrix}\right.\)
Câu hỏi của Nguyễn Kim Oanh - Địa lý lớp 0 | Học trực tuyến
Câu trả lời thứ 800.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(3x^2-5x=0\Leftrightarrow x(3x-5)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ 3x-5=0\rightarrow x=\frac{5}{3}\end{matrix}\right.\)
b)
\(x^3-0,36x=0\Leftrightarrow x(x^2-0,36)=0\)
\(\Leftrightarrow x(x-0,6)(x+0,6)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ x-0,6=0\\ x+0,6=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=0\\ x=0,6\\ x=-0,6\end{matrix}\right.\)
c)
\((5x+2)^2-(3x-1)^2=0\)
\(\Leftrightarrow (5x+2-3x+1)(5x+2+3x-1)=0\)
\(\Leftrightarrow (2x+3)(8x+1)=0\)
\(\Rightarrow \left[\begin{matrix} 2x+3=0\\ 8x+1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-3}{2}\\ x=\frac{-1}{8}\end{matrix}\right.\)
d)
\(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow x^2-2.5x+5^2=0\Leftrightarrow (x-5)^2=0\)
\(\Rightarrow x=5\)
e)
\(3(x+5)-x^2-5x=0\)
\(\Leftrightarrow 3(x+5)-x(x+5)=0\)
\(\Leftrightarrow (3-x)(x+5)=0\)
\(\Rightarrow \left[\begin{matrix} 3-x=0\rightarrow x=3\\ x+5=0\rightarrow x=-5\end{matrix}\right.\)
f)
\((x-1)^2-2(x-1)(3x+2)+(3x+2)^2=0\)
\(\Leftrightarrow [(x-1)-(3x+2)]^2=0\)
\(\Leftrightarrow (-2x-3)^2=0\Rightarrow -2x-3=0\Rightarrow x=\frac{-3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,x^3-3x^2+3x+1=0\)(1)
Đặt : \(t=x-1\Rightarrow x=t+1\)
Khi đó : \(\left(1\right)\Leftrightarrow\left(t+1\right)^3-3\left(t+1\right)^2+3\left(t+1\right)+1=0\)
\(\Leftrightarrow t^3+2=0\)
\(\Leftrightarrow t^3=-2\)
\(\Leftrightarrow x=\sqrt[3]{-2}=-1,25992105\)
\(\Rightarrow x=t+1=-0,2599210499\)
\(b,25x^2-3=0\)
\(\Leftrightarrow25\left(x^2-\dfrac{3}{25}\right)=0\)
\(\Leftrightarrow x^2=\dfrac{3}{25}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{3}{25}}\\x=-\sqrt{\dfrac{3}{25}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{3}}{5}\\x=-\dfrac{\sqrt{3}}{5}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a)
ĐKXĐ: \(x\neq 0; x\neq - 1\)
\(M=\frac{(x+2)(x+1)+2.3x-3.3x(x+1)}{3x(x+1)}:\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)
\(=\frac{-8x^2+2}{3x(x+1)}.\frac{x+1}{2-4x}-\frac{3x-x^2+1}{3x}=\frac{2(1-4x^2)}{3x(2-4x)}-\frac{3x-x^2+1}{3x}\)
\(=\frac{2(1-2x)(1+2x)}{6x(1-2x)}-\frac{3x-x^2+1}{3x}=\frac{1+2x}{3x}-\frac{3x-x^2+1}{3x}=\frac{x^2-x}{3x}=\frac{x-1}{3}\)
b)
Khi $x=2006\Rightarrow M=\frac{2006-1}{3}=\frac{2005}{3}$
c)
\(M< 0\Leftrightarrow \frac{x-1}{3}< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)
Kết hợp ĐKXĐ suy ra $x< 1; x\neq 0; x\neq -1$
d)
Để \(\frac{1}{M}=\frac{3}{x-1}\in\mathbb{Z}\) thì \(3\vdots x-1\)
\(\Rightarrow x-1\in\left\{\pm 1;\pm 3\right\}\)
\(\Rightarrow x\in\left\{0;2;-2;4\right\}\)
Kết hợp đkxđ suy ra $x\in\left\{-2;2;4\right\}$
Lời giải:
a)
ĐKXĐ: \(x\neq 0; x\neq - 1\)
\(M=\frac{(x+2)(x+1)+2.3x-3.3x(x+1)}{3x(x+1)}:\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)
\(=\frac{-8x^2+2}{3x(x+1)}.\frac{x+1}{2-4x}-\frac{3x-x^2+1}{3x}=\frac{2(1-4x^2)}{3x(2-4x)}-\frac{3x-x^2+1}{3x}\)
\(=\frac{2(1-2x)(1+2x)}{6x(1-2x)}-\frac{3x-x^2+1}{3x}=\frac{1+2x}{3x}-\frac{3x-x^2+1}{3x}=\frac{x^2-x}{3x}=\frac{x-1}{3}\)
b)
Khi $x=2006\Rightarrow M=\frac{2006-1}{3}=\frac{2005}{3}$
c)
\(M< 0\Leftrightarrow \frac{x-1}{3}< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)
Kết hợp ĐKXĐ suy ra $x< 1; x\neq 0; x\neq -1$
d)
Để \(\frac{1}{M}=\frac{3}{x-1}\in\mathbb{Z}\) thì \(3\vdots x-1\)
\(\Rightarrow x-1\in\left\{\pm 1;\pm 3\right\}\)
\(\Rightarrow x\in\left\{0;2;-2;4\right\}\)
Kết hợp đkxđ suy ra $x\in\left\{-2;2;4\right\}$
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(x^4-4x^3+3x^2+4x-4=0\)
\(\Rightarrow x^4-4x^3+4x^2-x^2+4x-4=0\)
\(\Rightarrow x^2\left(x^2-4x+4\right)-\left(x^2-4x+4\right)=0\)
\(\Rightarrow\left(x^2-4x+4\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x-2\right)^2\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=1\\x=-1\end{matrix}\right.\)
2. \(x^2-3x+2=0\)
\(\Rightarrow x^2-2x-x+2=0\)
\(\Rightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(2,x^2-3x+2=0\)
\(\Rightarrow x^2-2x-x+2=0\)
\(\Rightarrow\left(x^2-x\right)-\left(2x-x\right)=0\)
\(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
a) 3x2+12x−66=0
=> 3(x + 2)2 - 12 - 66 = 0
=> 3(x + 2)2 - 78 = 0
=> 3(x + 2)2 = 78
=> (x + 2)2 = 26
=> x = \(\sqrt{26}-2\)
b)9x2−30x+225=0
=> (3x - 5)2 - 25 + 225 = 0
=> (3x - 5)2 + 200 = 0
=> (3x - 5)2 = -200
9x2 - 30x + 225 không có ngiệmc)x2+3x−10=0=> (x + 1,5)2 - 2,25 - 10 = 0
=> (x + 1,5)2 - 12,25 = 0
=> (x + 1,5)2 = 12, 25
=> x + 1,5 = 3,5
=> x = 2
d)3x2−7x+1=0=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{49}{12}\) + 1 = 0
=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{37}{12}\) = 0
=> 3(x - \(\dfrac{7}{6}\))2 = \(\dfrac{37}{12}\)
=> (x - \(\dfrac{7}{6}\))2 = \(\dfrac{37}{36}\)
=> x = \(\dfrac{\sqrt{37}}{6}+\dfrac{7}{6}=\dfrac{\sqrt{37}+7}{6}\)
e) 3x2−7x+8=0
=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{49}{12}\)+ 8 = 0
=> 3(x - \(\dfrac{7}{6}\))2 + \(\dfrac{47}{12}\) = 0
=> 3(x - \(\dfrac{7}{6}\))2 = \(-\dfrac{47}{12}\)
KL : Không có ngiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(5\left(m+3x\right)\left(x+1\right)-4\left(1+2x\right)=80\)
Phương trình nhận \(x=2\)làm nghiệm nên :
\(5\left(m+3.2\right)\left(2+1\right)-4\left(1+2.2\right)=80\)
\(\Leftrightarrow15m+90-20=80\)
\(\Leftrightarrow15m=80+20-90\)
\(\Leftrightarrow15m=10\Leftrightarrow m=1,5\)
....
b, \(3\left(2x+m\right)\left(3x+2\right)-2\left(3x+1\right)^2=43\)
Phương trình nhận \(x=1\)làm nghiệm nên :
\(3\left(2.1+m\right)\left(3.1+2\right)-2\left(3.1+1\right)^2=43\)
\(\Leftrightarrow30+15m-32=43\)
\(\Leftrightarrow15m=43+32-30\)
\(\Leftrightarrow15m=45\Leftrightarrow m=3\)
....
\(\frac{315-x}{101}+\frac{313-x}{103}+\frac{311-x}{105}+\frac{309-x}{107}+4=0\)
\(\Leftrightarrow\frac{315-x}{101}+1+\frac{313-x}{103}+1+\frac{311-x}{105}+1+\frac{309-x}{107}+1=0\)
\(\Leftrightarrow\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=0\)
\(\Leftrightarrow\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
\(\Leftrightarrow416-x=0\)
\(\Leftrightarrow x=416\)
a) 5(m + 3x)(x + 1) - 4(1 + 2x) = 80
Phương trình có nghiệm x = 2:
5(m + 3.2)(2 + 1) - 4(1 + 2.2) = 80
<=> 5(m + 6).3 - 4.5 = 80
<=> 15(m + 6) - 4.5 = 80
<=> 15(m + 6) - 20 = 80
<=> 15(m + 6) = 80 + 20
<=> 15(m + 6) = 100
<=> m + 6 = 100 : 15
<=> m + 6 = 20/3
<=> m = 20/3 - 6
<=> m = 2/3
b) 3(2x + m)(3x + 2) - 2(3x + 1)2 = 43
Phương trình có nghiệm x = 1:
3(2.1 + m)(3.1 + 2) - 2(3.1 + 1)2 = 43
<=> 3(2 + m).5 - 2.16 = 43
<=> 15(2 + m) - 32 = 43
<=> 15(2 + m) = 43 + 32
<=> 15(2 + m) = 75
<=> 2 + m = 75 : 15
<=> 2 + m = 5
<=> m = 5 - 2
<=> m = 3