Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,3xn(6xn−3+1)−2xn(9xn−3−1)a,3xn(6xn−3+1)−2xn(9xn−3−1)
=xn[3(6xn−3+1)−2(9xn−3−1)]=xn[3(6xn−3+1)−2(9xn−3−1)]
=xn(18xn−3+3−18xn−3+2)=xn(18xn−3+3−18xn−3+2)
=5xn=5xn
b,5n+1−4.5nb,5n+1−4.5n=5n.5+5n.4=5n(5+4)=45n=5n.5+5n.4=5n(5+4)=45n
c,62.64−43(36−1)c,62.64−43(36−1)
=66−43.36+43=66−43.36+43
=26.36−43.36+43=26.36−43.36+43
=36(26−43)+43=36(26−43)+43
=36[(22)3−43]+43=36.0+43=43=64
~Hok tốt~
TL:
a)
=\(18x^{2n-3}+3x^n-18x^{2n-3}+2x^n\)
=\(6x^n\)
b)
=\(5^n.5-4.5^n\)
=\(5^n\left(5-4\right)\)
=\(5^n\)
vậy.......
hc tốt
a, Để 15x^n+2-y^n chia hết cho 3x^3y^4
Suy ra: n+2>=3 và n>=4
Suy ra: n>=1 và n>=4
Đến đay thì bạn tự làm nhé!
A = 3x ( x2 - 2x + 3) - x2 ( 3x - 2 ) + 5 ( x2 - x )
A = 3x3 - 6x2 + 9x - 3x3 + 2x2 + 5x2 - 5x
A = ( 3x3 - 3x3 ) - ( 6x2 - 2x2 - 5x2 ) + ( 9x - 5x )
A = x
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(A=y\left(x^4-y^4\right)-y\left(y^4-y^4\right)=0\)
=> đpcm
b) \(B=\left(\frac{1}{3}+2x\right)\left(4x^2+\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\) (đã sửa đề)
\(B=\left(\frac{1}{27}+8x^3\right)-\left(8x^3-\frac{1}{27}\right)\)
\(B=\frac{2}{27}\)
=> đpcm
c) \(C=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\) (đã sửa đề)
\(C=x^3-3x^2+3x-1-x^3+1+3x^2-3x\)
\(C=0\)
=> đpcm
Vì \(x=2017\Rightarrow x+1=2018\)
Thay \(x+1=2018\)vào biểu thức A ta được :
\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+\left(x+1\right)\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1\)
\(=1\)
a, \(4^x-10.2^x+16=0\Leftrightarrow\left(2^x\right)^2-10.2^x+16=0\)
Đặt \(2^x=t\Rightarrow t^2-10t+16=0\Leftrightarrow\orbr{\begin{cases}t=8\\t=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
b. Đặt \(2x^2-3x-1=t\Rightarrow t^2-3\left(t-4\right)-16=0\)
\(\Leftrightarrow t^2-3t-28=0\Leftrightarrow\orbr{\begin{cases}t=7\\t=-4\end{cases}}\)
Thế vào rồi giải tiếp em nhé.
Phần a? phải là \(4a^2-4a+1\)chứ
a) \(4a^2-4a+1=\left(2a\right)^2+2.2a+1\)
\(=\left(2a+1\right)^2\)
b) \(9x^2-25y^2=\left(3x\right)^2-\left(5y\right)^2\)
\(=\left(3x-5y\right)\left(3x+5y\right)\)
c) \(1-2x+a^2=\left(1-a\right)^2\)
d) \(\left(2x+1\right)-2.\left(2x+1\right)\left(3x-y\right)+\left(3x-y\right)^2\)
\(=\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)
nếu có sai thì bn thông cảm
1.
b) nó là hằng đẳng thức rồi bn nhá
c) \(1-2a+a^2\)= \(1^2-2a1+a^2\)=\(\left(1-a\right)^2\)
d)\(\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)=\(\left(2x+1-3x+y\right)^2\)=\(\left(1-x+y\right)^2\)
2.
a)\(\left(\frac{1}{2}x\right)^2-\left(3y\right)^2\)=\(\left(\frac{x}{2}-3y\right)\left(\frac{x}{2}+3y\right)\)
b) Ko khai triển đc
c) \(4x^2+2xy+\frac{1}{4}y^2\)
3x5kwkj