Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
\(B=\left|3x-5\right|+\left|2-3x\right|\ge\left|3x-5+2-3x\right|=\left|-3\right|=3\)
Dấu "=" xảy ra
TH1: \(\Leftrightarrow\hept{\begin{cases}3x-5>0\\2-3x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{5}{3}\\x< \frac{2}{3}\end{cases}\Rightarrow}\frac{5}{3}< x< \frac{2}{3}\left(\text{loại}\right)}\)
TH2: \(\Leftrightarrow\hept{\begin{cases}3x-5< 0\\2-3x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< \frac{5}{3}\\x>\frac{2}{3}\end{cases}\Rightarrow}\frac{2}{3}< x< \frac{5}{3}\left(\text{thỏa mãn}\right)}\)
Vậy Bmin = 3 <=> 2/3 < x < 5/3
Câu 2 :
\(C=\left|2x-20\right|-\left|2x+3\right|\le\left|2x-20-2x-3\right|=\left|-23\right|=23\)
Dấu "=" xảy ra
TH1 : \(\Leftrightarrow\hept{\begin{cases}2x-20>0\\2x+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>10\\x>\frac{-3}{2}\end{cases}}\Rightarrow x>10\)
TH2: \(\Leftrightarrow\hept{\begin{cases}2x-20< 0\\2x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 10\\x< \frac{-3}{2}\end{cases}\Rightarrow}}x< \frac{-3}{2}\)
Vậy Cmax = 23 <=> 2 t/h ( ko chắc )
\(B=\left|3x-5\right|+\left|2-3x\right|\ge\left|3x-5+2-3x\right|=\left|-5+2\right|=3\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3x-5\right)\left(2-3x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}3x-5\ge0\\2-3x\le0\end{cases}}\) hoặc \(\hept{\begin{cases}3x-5\le0\\2-3x\ge0\end{cases}}\)
Giải ra ta được: \(\Leftrightarrow\frac{2}{3}\le x\le\frac{5}{3}\)
Vậy Bmin = 3 khi và chỉ khi \(\frac{2}{3}\le x\le\frac{5}{3}\)
\(C=\left|2x-20\right|-\left|2x+3\right|\le\left|2x-20-2x-3\right|=\left|-20-3\right|=23\)
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}2x-20\ge2x+3\ge0\\2x-20\le2x+3\le0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\ge10;x\ge\frac{-3}{2}\\x\le10;x\le\frac{-3}{2}\end{cases}}\)
Vậy Cmax = 17 khi và chỉ khi ....
\(B>=\left|3x-5+2-3x\right|=3\)
Dấu = xảy ra khi (3x-5)(3x-2)<=0
=>2/3<=x<=5/3
\(C=\left|2x-20\right|-\left|2x+3\right|\le\left|2x-20-2x-3\right|=23\)
Dấu = xảy ra khi (2x-20)(2x+3)<=0
=>-3/2<=x<=10
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
2(x - 3) + 5 = 3x - 1
2x-6+5=3x-1
2x-1=3x-1
2x-3x=-1+1
-x=0
x=0
2x(3x + 2) - 5 = 3( 2x^2 - 2x + 1)
6x2+4x-5=6x2-6x+3
6x2+4x-6x2+6x=3+5
10x=8
x=4/5
(3x - 2)(2x - 3) + 5 = 5
(3x-2)(2x-3)=0
=>3x-2=0 hoặc 2x-3=0
=>x=2/3 hoặc x=3/2
a, \(\left|x-\frac{2}{3}\right|=\frac{1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{1}{2}\\x-\frac{2}{3}=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}+\frac{2}{3}\\x=\frac{2}{3}-\frac{1}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{6}\\x=\frac{1}{6}\end{cases}}}\)
b, \(\left|x+\frac{7}{20}\right|=\frac{3}{15}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{7}{20}=\frac{1}{5}\\x+\frac{7}{20}=-\frac{1}{5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}-\frac{7}{20}\\x=-\frac{1}{5}-\frac{7}{20}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-3}{20}\\x=\frac{-11}{20}\end{cases}}}\)
c, \(\left|3x+2\right|=\left|7x-4\right|\)
\(\Leftrightarrow\orbr{\begin{cases}3x+2=7-4x\\3x+2=4x-7\end{cases}\Leftrightarrow\orbr{\begin{cases}7x=5\\x=9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{7}\\x=9\end{cases}}}\)
d, \(\left|5-2x\right|=\left|2x-5\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5-2x=2x-5\\5-2x=5-2x\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\0x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x\in Q\end{cases}}}\)
=> Có vô số x thỏa mãn \(\left|5-2x\right|=\left|2x-5\right|\)
e, \(\left|-5-6x\right|=\left|-x-5\right|\)
\(\Leftrightarrow\orbr{\begin{cases}-5-6x=-x-5\\-5-6x=x+5\end{cases}\Leftrightarrow\orbr{\begin{cases}-5x=0\\-7x=10\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-\frac{10}{7}\end{cases}}}\)
f, \(\left|-x+5\right|=\left|12-3x\right|\) đúng ko ???
\(\Leftrightarrow\orbr{\begin{cases}-x-5=12-3x\\-x+5=3x-12\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=7\\-4x=17\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{17}{4}\end{cases}}}\)
a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)
=>-38x=7
hay x=-7/38
b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)
=>1/2x=0
hay x=0
c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)
=>-29x=15
hay x=-15/29
d: \(\Leftrightarrow x^2+2x-x-3=5\)
\(\Leftrightarrow x^2+x-8=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)
e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)
\(\Leftrightarrow-25x^2=4\)
\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)
giải chi tiết hộ mik nha
15x-6x2+6x2-10x=20
5x=20
x=4