K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 giờ trước (21:04)

3x=4y

=>\(\frac{x}{4}=\frac{y}{3}\)

=>\(\frac{x}{20}=\frac{y}{15}\left(1\right)\)

3y=5z

=>\(\frac{y}{5}=\frac{z}{3}\)

=>\(\frac{y}{15}=\frac{z}{9}\left(2\right)\)

Từ (1),(2) ta có: \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)

Đặt \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=k\)

=>x=20k; y=15k; z=9k

xz=45

=>\(20k\cdot9k=45\)

=>\(180k^2=45\)

=>\(k^2=\frac{45}{180}=\frac14\)

=>\(\left[\begin{array}{l}k=\frac12\\ k=-\frac12\end{array}\right.\)

TH1: \(k=\frac12\)

=>\(x=20\cdot\frac12=10;y=15\cdot\frac12=\frac{15}{2};z=9\cdot\frac12=\frac92\)

TH2: \(k=-\frac12\)

=>\(x=20\cdot\frac{-1}{2}=-10;y=15\cdot\frac{-1}{2}=\frac{-15}{2};z=9\cdot\frac{-1}{2}=\frac{-9}{2}\)

17 tháng 6 2019

a) 2x=3y-2x=5z-3y

<=> 2x+2x=3y+3y=5z

<=> 4x=6y=5z

\(\Leftrightarrow\frac{x}{6}=\frac{y}{5}=\frac{z}{4}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{6}=\frac{y}{5}=\frac{z}{4}=\frac{x+y+z}{6+5+4}=\frac{53}{15}\)

Từ đó => được x,y,z

b,c tương tự a

9 tháng 8 2016

Theo đề bài, ta có:

\(3x=4y;3y=4z\) hay \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{4}\) và 2x+3y-5z=55

\(\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{16}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{16}=\frac{2x+3y-2z}{2.9+3.12-2.16}=\frac{55}{22}=\frac{5}{2}\)

  • \(\frac{x}{9}=\frac{5}{2}.9=\frac{45}{2}\)
  • \(\frac{y}{12}=\frac{5}{2}.12=30\)
  • \(\frac{z}{16}=\frac{5}{2}.16=40\)

Vậy \(x=\frac{45}{2},y=30,z=40\)

 

 

9 tháng 8 2016

- Bơ Phếch ~

6 tháng 1 2019

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)  hay   \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)  =>  \(\frac{3x}{54}=\frac{4y}{64}=\frac{5z}{75}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{3x}{54}=\frac{4y}{64}=\frac{5z}{75}=\frac{3x-4y+5z}{54-64+75}=\frac{65}{65}=1\)

suy ra:  \(\frac{3x}{54}=1\)  =>  \(x=18\)

             \(\frac{4y}{64}=1\)   =>   \(y=16\)

             \(\frac{5z}{75}=1\) =>  \(z=15\)

6 tháng 1 2019

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)

\(\Leftrightarrow\frac{x}{\frac{2}{3}}=\frac{y}{\frac{3}{4}}=\frac{z}{\frac{4}{5}}\Rightarrow\frac{3x}{\frac{2}{3}.3}=\frac{4y}{\frac{3}{4}.4}=\frac{5z}{\frac{4}{5}.5}\)

\(\Leftrightarrow\frac{3x}{2}=\frac{4y}{3}=\frac{5z}{4}\)

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU:

\(\Leftrightarrow\frac{3x}{2}-\frac{4y}{3}+\frac{5z}{5}\Rightarrow\frac{3x-4y+5z}{2-3+5}=\frac{65}{4}\)

\(\Rightarrow\frac{3x}{2}=\frac{65}{4}\Rightarrow3x=\frac{65}{4}.2\Rightarrow3x=\frac{65}{2}\Rightarrow x=\frac{65}{6}\)

\(\Rightarrow\frac{4y}{3}=\frac{65}{4}\Rightarrow4y=\frac{65}{4}.3\Rightarrow4y=\frac{195}{4}\Rightarrow y=\frac{195}{16}\)

\(\Rightarrow\frac{5z}{5}=\frac{65}{4}\Rightarrow5z=\frac{65}{4}.5\Rightarrow5z=\frac{325}{4}\Rightarrow z=\frac{65}{4}\)

# chúc bạn học tốt #

6 tháng 7 2017

b) từ đề bài suy ra được x=2y/3. Z=5y/3 thay vào x.y.z=810 ta được. 10/9 nhân y^3 =810 => y^3=729=>y=9=>x=6. Z=15.                            

13 tháng 10 2021

sai từ chỗ z/7.1/4= z/28 nha k phải 27 vì bạn làm sai nên nhg câu đó bn k ra kết quả!

 

24 tháng 10 2016

Ta có:

\(2x=3y=5z\)

\(=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{3x}{\frac{3}{2}}=\frac{2y}{\frac{2}{3}}=\frac{5z}{1}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{3x}{\frac{3}{2}}=\frac{2y}{\frac{2}{3}}=\frac{5z}{1}=\frac{3x-2y-5z}{\frac{3}{2}-\frac{2}{3}-1}=\frac{-45}{\frac{-1}{6}}=45.6=270\)

\(\Rightarrow\begin{cases}x=270.\frac{1}{2}=135\\y=270.\frac{1}{3}=90\\z=270.\frac{1}{5}=54\end{cases}\)

Vậy x = 135; y = 90; z = 54

24 tháng 10 2016

Giải( sửa lại )

Ta có: \(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{3x}{\frac{3}{2}}=\frac{2y}{\frac{2}{3}}=\frac{5z}{1}=\frac{3x-2y-5z}{\frac{3}{2}-\frac{2}{3}-1}=\frac{-45}{\frac{-1}{6}}=270\)

+) \(\frac{x}{\frac{1}{2}}=270\Rightarrow x=135\)

+) \(\frac{y}{\frac{1}{3}}=270\Rightarrow y=90\)

+) \(\frac{z}{\frac{1}{5}}=270\Rightarrow z=54\)

Vậy bộ số \(\left(x,y,z\right)\)\(\left(135,90,54\right)\)

25 tháng 5 2016

Ta có: \(\frac{x}{3}\)=\(\frac{y}{4}\)=> \(\frac{x}{15}\)=\(\frac{y}{20}\)

          \(\frac{y}{5}\)=\(\frac{z}{6}\)=> \(\frac{y}{20}\)=\(\frac{z}{24}\) Vậy \(\frac{x}{15}\)=\(\frac{y}{20}\)=\(\frac{z}{24}\)

đặt \(\frac{x}{15}\)=\(\frac{y}{20}\)=\(\frac{z}{24}\)=k => x=15k; y=20k; z=24k

Thay x=15k; y=20k ; z=24k vào Biểu thức M ta có:

M=\(\frac{2x+3y+4z}{3x+4y+5z}\)=\(\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}\)=\(\frac{k\left(30+60+96\right)}{k\left(45+80+120\right)}\)=\(\frac{186}{245}\)

25 tháng 5 2016

Theo bài ra ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow x=\frac{3y}{4}\) ; \(\frac{y}{5}=\frac{z}{6}\Leftrightarrow z=\frac{6y}{5}\), Vậy ta có : \(M=\frac{2x+3y+z}{3x+4y+5z}=\frac{2.\frac{3y}{4}+3y+4.\frac{6y}{5}}{3.\frac{3y}{4}+4y+5.\frac{6y}{5}}=\frac{\frac{93y}{10}}{\frac{49y}{4}}=\frac{93}{10}.\frac{4}{49}=\frac{186}{245}\)