\(3x^4+5x^2y^2+2y^4-5x^2\)

Tại \(x^2+y^2=5\)

tính...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

a) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:

2xy(5x2y + 3x – z) = 2.1(–1).[5.12.(–1) + 3.1 – (–2)]

= -2[–5 + 3 +2] = –2.0 = 0

Vậy đa thức có giá trị bằng 0 tại x = 1 ; y = –1 và z = –2.

b) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:

xy2 + y2z3 + z3x4 = 1.(–1)2 + (–1)2(–2)3 + (–2)314

= 1 + (–8) + (–8) = –15

Vậy đa thức có giá trị bằng -15 tại x = 1 ; y = –1 và z = –2.

21 tháng 4 2017

a) Đặt P = 2xy(5x² +3x – z) Với x = 1; y = -1 và z = -2 ta có:

P = 2.1(-1).[5.1².(-1) + 3.1 – (-2)] = -2(-5 + 3 +2) = -2.0 = 0

Vậy P = 0

b) Đặt Q = xy² +y²z³ + z³X4. Với x =1; y = -1 và z = -2, ta có:

Q = 1.(-1)² + (-1)².(-2)³ .14 = 1 – 8 – 8 = -15

Vậy Q = -15.

22 tháng 7 2017

a) \(5x^2y^2\) tại \(x=-1;y=-\dfrac{1}{2}\)

Tại \(x=-1;y=-\dfrac{1}{2}\)​ ta có:

\(5.\left(-1\right)^2.\left(-\dfrac{1}{2}\right)^2\) = \(\dfrac{5}{4}\)

b) \(-\dfrac{1}{2}x^2y^3\) tại \(x=1;y=-2\)

Tại \(x=1;y=-2\)​ ta có:

\(-\dfrac{1}{2}.1^2.\left(-2\right)^3\) = 4

c)\(\dfrac{2}{3}x^2y\) tại x = -3; y = -1

Tại x = -3; y = -1, ta có:

\(\dfrac{2}{3}.\left(-3\right)^2.\left(-1\right)\)​ = -6

4 tháng 3 2020

Rút gọn A trước khi tính :

\(A=\left(\frac{7}{2}x^4y^3-\frac{1}{3}x^4y^3\right)+\left(8x^2y^5-5x^2y^5\right)-\left(6y+\frac{1}{2}y\right)\)

\(=\frac{19}{6}x^4y^3+3x^2y^5-\frac{13}{2}y\)

Thay \(x=-2,y=\frac{3}{4}\) vào A có :

\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{13}{2}\cdot\frac{3}{4}\)

\(=\frac{171}{8}+\frac{729}{8192}-\frac{39}{8}\approx16,6\)

:)) Số xấu ....

4 tháng 3 2020

Xét biểu thức A, ta suy ra:

\(A=\frac{19}{6}x^4y^3+3x^2y^5-\frac{-13}{2}y\)

Tại x=-2 và y=3/4 thì:

\(A=\frac{19}{6}\cdot\left(-2\right)^4\cdot\left(\frac{3}{4}\right)^3+3\cdot\left(-2\right)^2\cdot\left(\frac{3}{4}\right)^5-\frac{-13}{2}\cdot\frac{3}{4}\)

(phần này bạn tự tính)

\(\)