K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 10 2023

Lời giải:

Có:

$A=3^x+3^{x+1}+3^{x+2}+....+3^{x+2017}=3^x(1+3+3^2+3^3+....+3^{2017})$
$3A=3^x(3+3^2+3^3+...+3^{2018})$
$\Rightarrow 3A-A=3^x[(3+3^2+3^3+...+3^{2018}) -(1+3+3^2+....+3^{2017})]$

$\Rightarrow 2A=3^x(3^{2018}-1)=3^{2020}-9$

$\Rightarrow 3^x(3^{2018}-1=3^2(3^{2018}-1)$

$\Rightarrow 3^x=3^2$

$\Rightarrow x=2$ 

αi nhanh mình sẽ Tick ạ.

9 tháng 4 2023

A = \(\dfrac{3^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\) 

A = \(\dfrac{3^{100}.\left(-2\right)+3^{100}.3}{\left(-3\right)^{100}.\left(-3\right)-3^{100}}\)

A = \(\dfrac{3^{100}.\left(-2+3\right)}{3^{100}.\left(-3\right)-3^{100}}\)

A = \(\dfrac{3^{100}.1}{3^{100}.\left(-3-1\right)}\)

A = \(\dfrac{3^{100}}{3^{100}}\) . \(\dfrac{1}{-4}\)

A = - \(\dfrac{1}{4}\)

24 tháng 8 2019

Hello bạn, mk cx tên Mai nek.

\(\frac{2}{5}.\left(x-1\right)+1=\frac{3}{5}\)

\(\Rightarrow\frac{2}{5}\left(x+1\right)=\frac{3}{5}-1\)

\(\Rightarrow\frac{2}{5}\left(x+1\right)=-\frac{2}{5}\)

\(\Rightarrow x+1=-\frac{2}{5}:\frac{2}{5}\)

\(\Rightarrow x+1=-1\)

\(\Rightarrow x=-1-1\)

\(\Rightarrow x=-2\)

24 tháng 8 2019

\(\left(\frac{2}{7}\times x+1\right)\times\left(3-\frac{1}{2}\times x\right)=0\)

\(TH1:\frac{2}{7}\times x+1=0\)

\(\frac{2}{7}\times x=-1\)

\(x=-\frac{2}{7}\)

\(TH2:3-\frac{1}{2}\times x=0\)

\(\frac{1}{2}\times x=3\)

\(x=\frac{3}{2}\)

Vậy \(x\in\left\{\frac{3}{2};-\frac{2}{7}\right\}\)

21 tháng 6 2021

a)5x+1=125

=>5x+1=53

=>x+1=3

=>x=2

vậy x=2

b)42x+1=64

=>42x+1=43

=>2x+1=3

=>x=1

vậy x =1

21 tháng 6 2021

e)=>43x+2017=42020-3

=>3x+2017=2017

=>x=0

vậy x=0

f)=>2x+2x 23=144

=>2x x (1+23)=144

=>2 x   9=144

=>2x=16

=>2x=24

=>x=4

vậy x=4

13 tháng 8 2023

\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)

\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)

\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)

\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)

\(=>x+1=0\)

\(=>x=-1\)

b,

\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)

\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)

\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)

\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)

\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)

Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)

\(=>x+2021=0\)

\(=>x=-2021\)

 

c,

\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)

\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)

\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)

\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)

Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)

\(=>x+329=0\)

\(=>x=-329\)

20 tháng 9 2017

a) 20-( x - 5 ) x2 = 2

         ( x - 5 ) x2 = 20-2=18

             x - 5 = 18 : 2

             x - 5 = 9

                 x = 9+5

                 x = 14.

b) 150 : ( 38 - 2x ) = 5

               38 - 2x  = 150 : 5 = 30

                     2x  = 38 - 30 = 8

                       x  = 8 : 2

                       x  = 4.

       

9 tháng 7 2019

1. Tự làm

2. Ta có: \(x_1+x_2+x_3+...+x_{2017}+x_{2018}+x_{2019}+x_{2020}=0\)

=> \(\left(x_1+x_2+x_3\right)+\left(x_4+x_5+x_6\right)+....+\left(x_{2017}+x_{2018}+x_{2019}\right)+x_{2020}=0\)

=> \(3+3+....+3+x_{2020}=0\) (gồm 673 chữ số 3 vì x1 + .... + x2019 gồm 2019 hạng tử gộp lại mỗi cặp 3 hạng tử)

=> \(3.673+x_{2020}=0\)

=> \(2019+x_{2020}=0\)

=> \(x_{2020}=-2019\)

3. a) 3(x - 1) - (x - 5) = -18

=> 3x - 3 - x + 5 = -18

=> 2x + 2 = -18

=> 2x  = -18 - 2

=> 2x = -20

=> x = -20 : 2

=> x = 10

b ) x + (x + 1) + (x + 2) + ... + (x + 2019) = 0

=> (x + x  + ... + x) + (1 + 2 + ...  + 2019) = 0

=> 2020x + (2019 + 1).[(2019 - 1) : 1 + 1] : 2 = 0

=> 2020x + 2020. 2019 : 2 = 0

=> 2020x + 2039190 = 0

=> 2020x = -2039190

=> x = -2039190 : 2020

=> x = -10095 

(xem lại đề)

c) Ta có: 3x + 23 = 3(x + 4) + 11

Do 3(x + 4) \(⋮\)4 => 11 \(⋮\)x + 4

=> x + 4 \(\in\)Ư(11) = {1; -1; 11; -11}

Với: +) x + 4 = 1 => x = 1 - 4 = -3

+) x + 4 = -1 => x = -1 - 4 = -5

+) x + 4 = 11 => x = 11 - 4 = 7

+) x + 4 = -11 => x = -11 - 4 = -15

4a) Ta có: 22x - y = 21x + x - y = 21 + (x - y)

Do 21x \(⋮\)7; x - y \(⋮\)7

=> 22x - y \(⋮\)7

b) 8x + 20y = 7x + 21y + x - y = 7(x + 3y) + (x - y)

Do : 7(x + 3y) \(⋮\)7; x - y \(⋮\)7

=> 8x + 20y \(⋮\)7

c) 11x + 10y = 14x + 7y - 3x + 3y = 7(2x + y) - 3(x - y)

Do: 7(2x + y) \(⋮\)7; 3(x - y) \(⋮\)7

=> 11x + 10y \(⋮\)7