Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{9x^2-6x+1}\)
\(=-\dfrac{9x^2+3x+2x-6x^2}{\left(3x-1\right)\left(3x+1\right)}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)
\(=-\dfrac{x\left(3x+5\right)}{\left(3x-1\right)^2}.\dfrac{\left(3x-1\right)^2}{2x\left(3x+5\right)}\)
\(=\dfrac{-1}{2}\)
b) \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
\(=\left(\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{3x-9-x^2}{3x\left(x+3\right)}\right)\)
\(=\dfrac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\dfrac{3x\left(x+3\right)}{-x^2+3x-9}\)
\(=\dfrac{x^2-3x+9}{x-3}.\dfrac{3}{-\left(x^2-3x+9\right)}\)
\(=-\dfrac{3}{x-3}\)
4: \(3x^3-5x^2+5x-2\)
\(=3x^3-2x^2-3x^2+2x+3x-2\)
\(=x^2\left(3x-2\right)-x\left(3x-2\right)+\left(3x-2\right)\)
\(=\left(3x-2\right)\left(x^2-x+1\right)\)
5: \(5x^3-12x^2+14x-4\)
\(=5x^3-2x^2-10x^2+4x+10x-4\)
\(=\left(5x-2\right)\left(x^2-2x+2\right)\)
a,\(\dfrac{3}{x-3}\) - \(\dfrac{6x}{9-x^2}\) + \(\dfrac{x}{x+3}\) (*)
đkxđ: x khác 3, x khác -3
(*) \(\dfrac{3(x+3)}{\left(x-3\right).\left(x+3\right)}\)- \(\dfrac{6x}{\left(x-3\right).\left(x+3\right)}\) + \(\dfrac{x\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}\)
=>3x+9 -6x + x2+3x
<=>x2 + 3x-6x+3x + 9
<=>x2 +9
<=>(x-3).(x+3)
a, \(3x^3-4x^2+5x-4\)
\(=3x^3-3x^2-x^2+x+4x-4\)
\(=3x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(3x^2-x+4\right)\left(x-1\right)\)
b, \(4x^3-3x^2+5x-21\)
\(=4x^3-7x^2+4x^2-7x+12x-21\)
\(=x^2\left(4x-7\right)+x\left(4x-7\right)+3\left(4x-7\right)\)
\(=\left(x^2+x+3\right)\left(4x-7\right)\)
c, \(3x^3+8x^2+14x+15\)
\(=3x^3+5x^2+3x^2+5x+9x+15\)
\(=x^2\left(3x+5\right)+x\left(3x+5\right)+3\left(3x+5\right)\)
\(=\left(x^2+x+3\right)\left(3x+5\right)\)
Bài này dùng phương pháp nhẩm nghiệm (tối ưu nhất với đa thức bậc ba)
Chúc bạn học tốt.
1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)
ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )
\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)
vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn
Mẫu cho mấy bài rồi tự làm nha
a) \(2x+2>4\)
\(\Leftrightarrow2x>2\)
\(\Leftrightarrow x>1\)
b) \(3x+2>-5\)
\(\Leftrightarrow3x>-7\)
\(\Leftrightarrow x>-\dfrac{7}{3}\)
c) \(10-2x>2\)
\(\Leftrightarrow-2x>2-10\)
\(\Leftrightarrow-2x>-8\)
\(\Leftrightarrow x< 4\)
3 câu cuối tương tự mà làm
a) 2x + 2 > 4
<=> 2x > 2
<=> x > 1
\(S=\left\{x|x>1\right\}\)
b) 3x + 2 > -5
<=> 3x > -7
<=> x > \(-\dfrac{7}{3}\)
\(S=\left\{x|x>-\dfrac{7}{3}\right\}\)
c) 10 - 2x > 2
<=> -2x > -8
<=> x < 4
\(S=\left\{x|x< 4\right\}\)
d) 1 - 2x < 3
<=> -2x < 2
<=> x > -1
\(S=\left\{x|x>-1\right\}\)
e) 10x + 3 - 5x \(\le\) 14x + 12
<=> 10x - 14x - 5x \(\le\) 12 - 3
<=> -9x \(\le\) 9
<=> \(x\ge-1\)
\(S=\left\{x|x\ge-1\right\}\)
f) 3x - 1 < 2x + 4
<=> 3x - 2x < 4 + 1
<=> x < 5
\(S=\left\{x|x< 5\right\}\)
a) \(\left(\dfrac{1}{2}x-3\right)^2=\dfrac{1}{4}x^2-3x+9\)
b) \(\left(5x+1\right)^2=25x^2+10x+1\)
c) \(\left(3-4x\right)^2=9-24x+16x^2\)
d) \(\left(2-\dfrac{1}{2}x\right)^2=4-2x+\dfrac{1}{4}x^2\)
e) \(\left(3x-1\right)\left(3x+1\right)=9x^2-1\)
g) \(\left(2a-3\right)^2=4a^2-12a+9\)
h) \(\left(4+3x\right)^2=16+24x+9x^2\)
i) \(\left(7-10x\right)\left(7+10x\right)=49-100x^2\)
\(x^3-x^2-14x+24\)
\(=x^3-2x^2+x^2-2x-12x+24\)
\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x-12\right)\)
\(=\left(x-2\right).\left[x^2+4x-3x-12\right]\)
\(=\left(x-2\right).\left[x\left(x+4\right)-3\left(x+4\right)\right]\)
\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)
\(x^4+x^3+2x-4\)
\(=x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4\)
\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+2x^2+2x+4\right)\)
\(=\left(x-1\right).\left[x^2\left(x+2\right)+2\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+2\right)\)
\(8x^4-2x^3-3x^2-2x-1\)
\(=8x^4-8x^3+6x^3-6x^2+3x^2-3x+x-1\)
\(=8x^3\left(x-1\right)+6x^2\left(x-1\right)+3x\left(x-1\right)+x-1\)
\(=\left(x-1\right)\left(8x^3+6x^2+3x+1\right)\)
\(=\left(x-1\right)\left[\left(8x^3+1\right)+\left(6x^2+3x\right)\right]\)
\(=\left(x-1\right)\left[\left(2x+1\right)\left(4x^2-2x+1\right)+3x\left(2x+1\right)\right]\)
\(=\left(x-1\right)\left(2x+1\right)\left(4x^2+x+1\right)\)
\(3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
Chúc bạn học tốt.