Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 :
b) (x-1/2 )2 = 0
<=> x - 1/2 = 0
<=> x = 0+ 1/2
<=> x = 1/2
c) ( x - 2 ) 2 = 1
<=> x -2 = 1
<=> x = 1 +2 = 3
d) ( 2x -1 )3 = -8
<=> ( 2x - 1) 3 = ( -2 ) 3
<=> 2x - 1 = -2
<=> 2x = -2+1 = -1
<=> x = -1/2
Bài 2 :
c) 32x-1=243
<=> 32x-1= 35
<=> 2x-1 = 5
<=> 2x = 6
<=> x = 6:2 = 3
Mk chỉ giải đc như vậy thôi
bạn thông cảm nhé !
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
\(a,\left(-3\text{x}+3\right)\left(-2\text{x}-2\right)\le\)\(0\)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}-3\text{x}+3\le0\Rightarrow x\ge1\\-2\text{x}-2\ge0\Rightarrow x\le-2\end{cases}}\\\hept{\begin{cases}-3x+3\ge0\Rightarrow x\le1\\-2\text{x}-2\le0\Rightarrow x\ge-2\end{cases}}\end{cases}\Rightarrow\orbr{\begin{cases}-2\ge x\ge1\left(lo\text{ại}\right)\\1\ge x\ge-2\left(ch\text{ọn}\right)\end{cases}}}\)
a) Do: (-3x + 3)(-2x - 2) bé hơn hoặc bằng 0 nên (-3x + 3) và (-2x - 2) trái dấu.
Mà: -3x + 3 > -2x - 2
=> -3x + 3 lớn hơn hoặc bằng 0 và -2x - 2 bé hơn hoặc bằng 0
=> x bé hơn hoặc bằng 1 và x lớn hơn hoặc bằng -2
b) Do: (1/2 - 2x)(1/2 + 3x) lớn hơn hoặc bằng 0 nên (1/2 - 2x) và (1/2 + 3x) cùng dấu.
TH1: Khi (1/2 - 2x) và (1/2 + 3x) lớn hơn hoặc bằng 0
=> x lớn hơn hoặc bằng 1/4 và x lớn hơn hoặc bằng -1/6
=> x lớn hơn hoặc bằng -1/6
Th2: (1/2 - 2x) và (1/2 + 3x) cùng bé hơn hoặc bằng 0
=> x bé hơn hoặc bằng 1/4 và x bé hơn hoặc bằng -1/6
=> x bé hơn hoặc bằng 1/4
a, \(\left|2x-3\right|=\left|3x-7\right|\)
\(\Rightarrow\orbr{\begin{cases}2x-3=3x-7\\2x-3=7-3x\end{cases}\Rightarrow}\orbr{\begin{cases}-x=-4\\5x=10\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=2\end{cases}\Rightarrow}x=2\)
b, \(\left|7x-1\right|-\left|2x-5\right|=0\)
\(\left|7x-1\right|=\left|2x-5\right|\)
\(\Rightarrow\orbr{\begin{cases}7x-1=2x-5\\7x-1=5-2x\end{cases}\Rightarrow}\orbr{\begin{cases}5x=-4\\9x=6\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{-4}{5}\\x=\frac{2}{3}\end{cases}}\)
c, \(\left|3x-1\right|+\left|4+3x\right|=0\)
Vì \(\left|3x-1\right|\ge0\); \(\left|4+3x\right|\ge0\)
\(\Rightarrow\left|3x-1\right|+\left|4+3x\right|\ge0\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}3x-1=0\\4+3x=0\end{cases}\Rightarrow}\hept{\begin{cases}3x=1\\3x=-4\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{3}\\x=\frac{-4}{3}\end{cases}}\)(loại)
d, 2x + 1 = 25 => 2x = 24 => x = 12
đề là thế này?
(2x + 1)2 = 25
\(\Rightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}\Rightarrow}\orbr{\begin{cases}2x=4\\2x=-6\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
a. \(\left(-3x+3\right)\left(-2x-2\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}-3x+3\le0;-2x-2\ge0\\-3x+3\ge0;-2x-2\le0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-3x\le-3;-2x\ge2\\-3x\ge-3;-2x\le2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\ge\dfrac{-3}{-3}=1;x\le\dfrac{2}{-2}=-1\\x\le\dfrac{-3}{-3}=1;x\ge\dfrac{2}{-2}=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\in\varnothing\\x\in\left[-1;1\right]\end{matrix}\right.\)
Vậy \(x\in\left[-1;1\right]\)
b. \(\left(\dfrac{1}{2}-2x\right)\left(\dfrac{1}{2}+3x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}-2x\ge0;\dfrac{1}{2}+3x\ge0\\\dfrac{1}{2}-2x\le0;\dfrac{1}{2}+3x\le0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-2x\ge-\dfrac{1}{2};3x\ge-\dfrac{1}{2}\\-2x\le-\dfrac{1}{2};3x\le-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\le-\dfrac{1}{2}:\left(-2\right)=\dfrac{1}{4};x\ge-\dfrac{1}{2}:3=-\dfrac{1}{6}\\x\ge-\dfrac{1}{2}:\left(-2\right)=\dfrac{1}{4};x\le-\dfrac{1}{2}:3=-\dfrac{1}{6}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\in\left[-\dfrac{1}{6};\dfrac{1}{4}\right]\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x\in\left[-\dfrac{1}{6};\dfrac{1}{4}\right]\)
\(3x^3-48x=0\)
\(3x\cdot\left(x^2-16\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x^2-16=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\left\{\pm4\right\}\end{cases}}\)
Vậy,............