K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2022

\(3\times\left(2x+1\right)^3=81\)

\(\left(2x+1\right)^3=27\)

\(\left(2x+1\right)=3\)

\(2x=2\)

\(x=1\)

26 tháng 6 2022

\(3^{x\left(2x+1\right)}.3=81\)

\(3^{x\left(2x+1\right)}=81\div3=27=3^3\)

\(\Rightarrow\) \(x\left(2x+1\right)=3\)

\(\Leftrightarrow\) \(2x^2+x=3\)

\(\Leftrightarrow\) \(x=1\)

Cách giải cũng như hiểu đề bài của bạn Vũ sai rồi nhé

 

 

7 tháng 8 2020

a) ( 3x - 2 )5 = -32

<=> ( 3x - 2 )5 = -25

<=> 3x - 2 = -2

<=> 3x = 0

<=> x = 0

b) ( 3 - 2x )4 = 81

<=> ( 3 - 2x ) = 34

<=> 3 - 2x = 3

<=> 2x = 0

<=> x = 0

c) ( x - 3 )2 = ( 3x + 4 )2

<=> ( x - 3 )2 - ( 3x + 4 )2 = 0

<=> [ x - 3 - ( 3x + 4 ) ][ x - 3 + ( 3x + 4 ] = 0

<=> [ x - 3 - 3x - 4 ][ x - 3 + 3x + 4 ] = 0

<=> [ -2x - 7 ][ 4x + 1 ] = 0

<=> \(\orbr{\begin{cases}-2x-7=0\\4x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=-\frac{1}{4}\end{cases}}\)

d) Mời các cao nhân chứ em tịt rồi ạ :((

7 tháng 8 2020

Sửa đề d nhé : ( x + 1 )^5  thì to quá em sửa thành ( x + 1 ) vì thấy trên mạng cho vậy 

\(\left(2x+5\right)=\left(x+1\right)\Leftrightarrow2x-x+5-1=0\)

\(\Leftrightarrow x=-4\)

25 tháng 1 2019

\(1)-4x\left(x-5\right)-2x\left(8-2x\right)=-3\)

\(\Rightarrow-4x^2-\left(-20x\right)-16x+4x^2=-3\)

\(\Rightarrow20x-14x=-3\)

\(\Rightarrow6x=-3\)

\(\Rightarrow x=-\dfrac{1}{2}\)

Vậy \(x=-\dfrac{1}{2}\)

\(2)\) Theo bài ra, ta có: \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)\(x^2+y^2+z^2=14\)

\(\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Rightarrow\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)

\(\Rightarrow\sqrt[3]{\left(\dfrac{x}{2}\right)^3}=\sqrt[3]{\left(\dfrac{y}{4}\right)^3}=\sqrt[3]{\left(\dfrac{z}{6}\right)^3}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

\(\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{6}\right)^2\)

\(\Rightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

Suy ra:

\(+)\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}.4=1=\left(\pm1\right)^2\Rightarrow x=\pm1\)

\(+)\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{16}.4=\dfrac{1}{4}=\left(\pm\dfrac{1}{2}\right)^2\Rightarrow y=\pm\dfrac{1}{2}\)

\(+)\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{36}.4=\dfrac{1}{9}=\left(\pm\dfrac{1}{3}\right)^2\Rightarrow z=\pm\dfrac{1}{3}\)

Vậy \(\left(x;y;z\right)\in\left\{\left(-1;-\dfrac{1}{2};-\dfrac{1}{3}\right);\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\right\}\)

25 tháng 1 2019

Oz Vessalius Câu 3 bạn xem lại xem có sai đề không?

a) Đặt \(f_{\left(x\right)}=0\)

\(\Leftrightarrow x^3+3x^2-2x-2=0\)

\(\Leftrightarrow x^3-x^2+4x^2-4x+2x-2=0\)

\(\Leftrightarrow x^2\left(x-1\right)+4x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+4x+4-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+2\right)^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x+2=\sqrt{2}\\x+2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{2}-2\\x=-\sqrt{2}-2\end{matrix}\right.\)

Vậy: \(S=\left\{1;\sqrt{2}-2;-\sqrt{2}-2\right\}\)

b) Đặt \(G_{\left(x\right)}=0\)

\(\Leftrightarrow3x+1=0\)

\(\Leftrightarrow3x=-1\)

hay \(x=\frac{-1}{3}\)

Vậy: \(S=\left\{-\frac{1}{3}\right\}\)

c) Đặt \(A_{\left(x\right)}=0\)

\(\Leftrightarrow2x^2-4=0\)

\(\Leftrightarrow2x^2=4\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

Vậy: \(S=\left\{\sqrt{2};-\sqrt{2}\right\}\)

d) Đặt \(h_{\left(x\right)}=0\)

\(\Leftrightarrow2x^2+3x-5=0\)

\(\Leftrightarrow2x^2+5x-2x-5=0\)

\(\Leftrightarrow x\left(2x+5\right)-\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{2}\\x=1\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{-5}{2};1\right\}\)

e) Đặt P=0

\(\Leftrightarrow3x^2+4x^2+6x+3=0\)

\(\Leftrightarrow7x^2+6x+3=0\)

\(\Leftrightarrow7\left(x^2+\frac{6}{7}x+\frac{3}{7}\right)=0\)

mà 7>0

nên \(x^2+\frac{6}{7}x+\frac{3}{7}=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\frac{6}{14}+\frac{9}{49}+\frac{12}{49}=0\)

\(\Leftrightarrow\left(x+\frac{3}{7}\right)^2=-\frac{12}{49}\)(vô lý)

Vậy: S=∅

3 tháng 5 2017

a)M(x)=-x4+(2x3-4x3)+(4x2-4x2)-2x-5

=-x4-2x3-2x-5

Bậc của đa thức:4

Hệ số cao nhất:-1

Hệ số tự do:-5

N(x)=(-x4+2x4)+2x3-x2+3x+5

=x4+2x3-x2+3x+5

Bậc của đa thức:4

Hệ số cao nhất:1

Hệ số tự do:5

b)Thay x=-1 vào N(x) ta có:

(-1)4+2.(-1)3-(-1)2+3.(-1)+5

=1-2-1-3+5

=0

c)P(x)-M(x)=N(x)

=>P(x)=N(x)+M(x)=(x4+2x3-x2+3x+5)+(-x4-2x3-2x-5)

=(x4-x4)+(2x3-2x3)-x2+(3x-2x)+(5-5)

=-x2+x

d)P(x)=-x2+x=-x(x-1)

Cho P(x)=0=>-x(x-1)=0

<=>-x=0 hoặc x-1=0

<=>x=0 hoặc x=1

Vậy...

13 tháng 7 2021

Ta có: M(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3

M(x) = (2x4 - x4) + (5x3 - x3  - 4x3) + (-x2 + 3x2) + 1

M(x) = x4 + 2x2 + 1

a) M(1) = 14 + 2.12 + 1 = 1 + 2 + 1 = 4

M(-1) = (-1)4 + 2.(-1)2 + 1 = 4

b) Ta có: x4 \(\ge\)0; 2x2 \(\ge\)0; 1 > 0

=> x4  + 2x2 + 1 > 0

=> M(x) > 0

=> M(x) ko có nghiệm

20 tháng 7 2017

a) A(x) = -4x5 - x3 + 4x2 + 5x + 9 + 4x5 - 6x2 - 2

= - x3 - 2x2 + 5x + 7

B(x) = -3x4 - 2x3 + 10x2 - 8x + 5x3 - 7 - 2x3 + 8x

= - 3x4 + x3 + 10x2 - 7

b) P(x) = A(x) + B(x)

= - x3 - 2x2 + 5x + 7 - 3x4 + x3 + 10x2 - 7

= - 3x4 + 8x2 + 5x

Q(x) = A(x) - B(x)

= - x3 - 2x2 + 5x + 7 - (- 3x4 + x3 + 10x2 - 7)

= - x3 - 2x2 + 5x + 7 + 3x4 - x3 - 10x2 + 7

= 3x4 - 2x3 - 12x2 + 5x + 14

c) Thế x = -1 vào đa thức P(x), ta có:

P(-1) = - 3.(-1)4 + 8.(-1)2 + 5.(-1) = -3 + 8 + (-5) = 0

Vậy x = -1 là nghiệm của đa thức P(x).

15 tháng 2 2016

moi hok lop 6 thoi

30 tháng 1 2017

Ta có:

(x - 3)4 = \(\frac{16}{81}\)

=> (x - 3)4 = \(\left(\frac{2}{3}\right)^4\)

=> \(\left[\begin{matrix}x-3=\frac{2}{3}\\x-3=\frac{-2}{3}\end{matrix}\right.\)

=> \(\left[\begin{matrix}x=\frac{2}{3}+3\\x=\frac{-2}{3}+3\end{matrix}\right.\)

=> \(\left[\begin{matrix}x=\frac{11}{3}\\x=\frac{7}{3}\end{matrix}\right.\)

Vậy \(\left[\begin{matrix}x=\frac{11}{3}\\x=\frac{7}{3}\end{matrix}\right.\).

19 tháng 6 2020

P(x) - Q(x) = (2x2 + 2x - 4 ) - (-x - x3 + 2x2 - 4)

                  = 2x2 + 2x - 4 + x + x3 - 2x2 + 4

                  = (2x2 - 2x2) + (2x + x) + (-4 + 4) + x3

                  = 3x + x3

Q(x) - P(x) = (-x - x3 + 2x2 - 4) - (2x2 + 2x - 4)

                  = -x - x3 + 2x2 - 4 - 2x2 - 2x + 4

                  = (-x - 2x) - x3 + (2x2 - 2x2) + (-4 + 4)

                  = -3x - x3

Ta có : \(P\left(x\right)-Q\left(x\right)=\left(2x^2+2x-4\right)-\left(-x-x^3+2x^2-4\right)\)

\(=2x^2+2x-4+x+x^3-2x^2+4=3x+x^3\)

\(Q\left(x\right)-P\left(x\right)=\left(-x-x^3+2x^2-4\right)-\left(2x^2+2x-4\right)\)

\(=-x-x^3+2x^2-4-2x^2-2x+4=-3x-x^3\)