Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2-3x=36\)
\(\Leftrightarrow x^2-x=12\)
\(\Leftrightarrow x^2-x-12=0\)
\(\Leftrightarrow\left(x^2-4x\right)+\left(3x-12\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)
Dễ rồi tự làm
\(3x^2-3x\left(-2+x\right)=36\)
\(=3x^2+6x-3x=36\)
\(=3x^2-3x=36\)
\(=3x\left(x-3\right)=36\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=36\\x-3=36\end{cases}\Leftrightarrow\orbr{\begin{cases}x=36:3=12\\x=36+3=39\end{cases}}}\)
Vậy S = { 12 ; 39 }
a) \(3x+2\left(5-x\right)=-11\)
\(\Leftrightarrow3x+10-2x=-11\)
\(\Leftrightarrow x=-21\)
b) \(3x^2-3x\left(x-2\right)=36\)
\(\Leftrightarrow3x^2-3x^2+6x=36\)
\(\Rightarrow x=6\)
\(a,3x+2\left(5-x\right)=0\)
\(\Rightarrow3x+10-2x=0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
\(b,x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Rightarrow\left(2x^2-x\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Rightarrow2x^3+9x^2-5x-2x^3-9x^2-4,5=3,5\)
\(\Rightarrow-5x-4,5=3,5\)
\(\Rightarrow-5x=8\)
\(\Rightarrow x=-\dfrac{8}{5}\)
\(c,3x^2-3x\left(x-2\right)=36\)
\(\Rightarrow3x^2-3x^2+6x=36\)
\(\Rightarrow6x=36\)
\(\Rightarrow x=6\)
\(d,\left(3x^2-x+1\right)\left(x-1\right)=x^2\left(4-3x\right)=\dfrac{5}{2}\)
\(\Rightarrow3x^3-3x^2-x^2+x+x-1+4x^2-3x^3=\dfrac{5}{2}\)
\(\Rightarrow2x-1=\dfrac{5}{2}\)
\(\Rightarrow2x=\dfrac{7}{2}\)
\(\Rightarrow x=\dfrac{7}{4}\)
b)3x2 - 3x(x - 2)=36 c) (3x2 - x + 1)(x - 1)+ x2(4 - 3x) = 5/2
3x2 - 3x2 + 6x= 36 3x3 - 3x2 - x2 + x + x - 1 + 4x2 - 3x3= 5/2
6x=36 =>x=36 : 6= 6 (3x3 - 3x3) + (-3x2 - x2 + 4x2) + (x + x) - 1= 5/2
2x - 1= 5/2 =>2x= 5/2 + 1= 7/2
x= 7/2 : 2 =7/4
a, Ta có : \(\left(x-1\right)\left(x^2+5x-2\right)-x^3+1=0\)
=> \(\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\)
=> \(\left(x-1\right)\left(x^2+5x-2\right)-\left(x-1\right)\left(x^2+x+1\right)=0\)
=> \(\left(x-1\right)\left(x^2+5x-2-x^2-x-1\right)=0\)
=> \(\left(x-1\right)\left(4x-3\right)=0\)
=> \(\left[{}\begin{matrix}x-1=0\\4x-3=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{1,\frac{3}{4}\right\}\)
b, Ta có : \(5\left(x^2+3x\right)-9\left(3x+3\right)=x^2-36\)
=> \(5x^2+15x-27x-27=x^2-36\)
=> \(5x^2+15x-27x-27-x^2+36=0\)
=> \(4x^2-12x+9=0\)
=> \(\left(2x-3\right)^2=0\)
=> \(x=\frac{3}{2}\)
Vậy phương trình có tập nghiệm là \(S=\left\{\frac{3}{2}\right\}\)
\(a.\left(x-1\right)\left(x^2+5x-2\right)-x^3+1=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x^3-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+5x-2\right)-\left(x-1\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+5x-2-x^2-x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{1;\frac{3}{4}\right\}\)
\(b.5\left(x^2+3x\right)-9\left(3x+3\right)=x^2-36\\ \Leftrightarrow5x^2+15x-27x-27=x^2-36\\ \Leftrightarrow5x^2+15x-27x-27-x^2+36=0\\ \Leftrightarrow4x^2-12x+9=0\\ \Leftrightarrow\left(2x-3\right)^2=0\\ \Leftrightarrow x=\frac{3}{2}\)
Vậy pt có tập nghiệm \(S=\left\{\frac{3}{2}\right\}\)
Chúc bạn học tốt!!!!!!!!!!!
3x^2-3x(-2+x)=36
3x^2 + 6x - 3x^2 = 36
6x = 36
x= 6