Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^5-10x^4+3x^3+3x^2-10x+3=0\)
___________
Nháp:
Ta nhẩm ngiệm ra được -1 vì tổng các hệ số có số mũ chẵn bằng tổng các hệ số có số mủ lẻ
\(\left\{{}\begin{matrix}3+3-10=-4\\-10+3+3=-4\end{matrix}\right.\)
Theo sơ đồ hoocner ta có:
3 | -10 | 3 | 3 | -10 | 3 | |
-1 | 3 | -13 | 16 | -13 | 3 | 0 |
\(\Rightarrow\left(x-1\right)\left(3x^4-13x^3+16x^2-13x+3\right)\)
Tiếp dùng phương pháp đoán nghiệm ta có thể phân tích thành
\(\left(x+1\right)\left(x-3\right)\left(3x-1\right)\left(x^2-x-1\right)\)
_____________________________________
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(3x-1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
a) Ta có: A = 0
=> x2 + 2x - 3 = 0
=> x2 + 3x - x - 3 = 0
=> x(x + 3) - (x + 3) = 0
=> (x - 1)(x + 3) = 0
=> \(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
Vậy ...
b) Ta có: B = 0
=> -3x2 + 12x - 9 = 0
=> -3x2 + 3x + 9x - 9 = 0
=> -3x(x - 1) + 9(x - 1) = 0
=> (-3x + 9)(x - 1) = 0
=> -3(x - 3)(x - 1) = 0
=> (x - 3)(x - 1) = 0
=> \(\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy ...
c) C = 0
=> 10x2 - 7x - 3 = 0
=> 10x2 - 10x + 3x - 3 = 0
=> 10x(x - 1) + 3(x - 1) = 0
=> (10x + 3)(x - 1) = 0
=> \(\orbr{\begin{cases}10x+3=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}10x=-3\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{3}{10}\\x=1\end{cases}}\)
d) D = 0
=> -7x4 + 10x3 - 3x2 = 0
=> x2(-7x2 + 10x - 3) = 0
=> x2(-7x2 + 7x + 3x - 3) = 0
=> x2.[-7x(x - 1) + 3(x - 1)] = 0
=> x2.(-7x + 3)(x - 1) = 0
=> x^2 = 0
-7x + 3 = 0
hoặc x - 1 = 0
=> x= 0
-7x = -3
hoặc x = 1
=> x = 0
hoặc x = 3/7
hoặc x = 1
Vậy ...
Đặt \(\hept{\begin{cases}x^2+3x-4=a\\3x^2+7x+4=b\end{cases}\Rightarrow4x^2+10x=a+b}\)
\(\left(x^2+3x-4\right)^3+\left(3x^2+7x+4\right)^3=\left(4x^2+10x\right)^3\)
\(\Rightarrow a^3+b^3=\left(a+b\right)^3\)
\(\Rightarrow a^3+b^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow3ab\left(a+b\right)=0\)
Nếu \(a=0\Rightarrow x^2+3x-4=0\Rightarrow x\left(x+4\right)-\left(x+4\right)=0\Rightarrow\left(x+4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
Nếu \(b=0\Rightarrow3x^2+7x+4=0\Rightarrow3x\left(x+1\right)+4\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(3x+4\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-\frac{4}{3}\end{cases}}\)
Nếu \(a+b=0\Rightarrow4x^2+10x=0\Rightarrow2x\left(2x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{5}{2}\end{cases}}\)
phân tích đa thức thành nhân tử chung ( phương pháp nhóm )
\(3x^5-10x^4-8x^3-3x^2+10x+8\)
\(=3x^5-3x^4-7x^4+7x^3-15x^3+15x^2-18x^2+18x-8x+8\)
\(=\left(x-1\right)\left(3x^4-7x^3-15x^2-18x-8\right)\)
\(=\left(x-1\right)\left[3x^3\left(x-4\right)+5x^2\left(x-4\right)+5x\left(x-4\right)+2\left(x-4\right)\right]\)
\(=\left(x-1\right)\left(x-4\right)\left[3x^3+5x^2+5x+2\right]\)
\(=\left(x-1\right)\left(x-4\right)\left[x^2\left(3x+2\right)+x\left(3x+2\right)+\left(3x+2\right)\right]\)
\(=\left(x-1\right)\left(x-4\right)\left(3x+2\right)\left(x^2+x+1\right)\)
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )