![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề: 1/1.4 (số hạng thứ 2) ➜ 1/4.7
Giải:
1/1.4+1/4.7+1/7.10+...+1/x.(x+3)=6/19
1/3.(3/1.4+3/4.7+3/7.10+...+3/x.(x+3))=6/19
1/3.(1/1-1/4+1/4-1/7+1/7-1/10+...+1/x-1/x+3)=6/19
1/3.(1/1-1/x+3) =6/19
1/1-1/x+3 =6/19:1/3
1/1-1/x+3 =18/19
1/x+3 =1/1-18/19
1/x+3 =1/19
⇒x+3=19
x=19-3
x=16
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : (12+13+14+....+110)×x=19+28+....+82+91(12+13+14+....+110)×x=19+28+....+82+91
Đặt A=19+28+....+82+91A=19+28+....+82+91
=(9−1−1−....−1)+(82+1)+(73+1)+.....+(19+1)=(9−1−1−....−1)+(82+1)+(73+1)+.....+(19+1)
=1+102+103+...+109=102+103+....+109+1010=1+102+103+...+109=102+103+....+109+1010
=(12+13+14+....+110)×10=(12+13+14+....+110)×10 (1)
Từ (1), suy ra:
(12+13+14+...+110)×x=(12+13+14+....+110)×10(12+13+14+...+110)×x=(12+13+14+....+110)×10
⇒x=10⇒x=10
Vậy x=10x=10
~ Học tốt ~
Ta có : (12+13+14+....+110)×x=19+28+....+82+91(12+13+14+....+110)×x=19+28+....+82+91
Đặt A=19+28+....+82+91A=19+28+....+82+91
=(9−1−1−....−1)+(82+1)+(73+1)+.....+(19+1)=(9−1−1−....−1)+(82+1)+(73+1)+.....+(19+1)
=1+102+103+...+109=102+103+....+109+1010=1+102+103+...+109=102+103+....+109+1010
=(12+13+14+....+110)×10=(12+13+14+....+110)×10 (1)
Từ (1), suy ra:
(12+13+14+...+110)×x=(12+13+14+....+110)×10(12+13+14+...+110)×x=(12+13+14+....+110)×10
⇒x=10⇒x=10
Vậy x=10x=10
~ Học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(=\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{x+3}\right)=\frac{667}{2002}\)
\(\frac{1}{1}-\frac{1}{x+3}=\frac{667}{2002}:\frac{1}{3}\)
\(\frac{1}{1}-\frac{1}{x+3}=\frac{2001}{2002}\)
\(\frac{1}{x+3}=1-\frac{2001}{2002}\)
\(\frac{1}{x+3}=\frac{1}{2002}\)
\(\frac{1}{x}=\frac{1}{2002-3}\)
\(\frac{1}{x}=\frac{1}{1999}\)
Vậy x = 1999
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt VT là A ta có:
\(3A=3\left(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{x\left(x+3\right)}\right)\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{6}{19}\)
\(3A=1-\frac{1}{x+3}\)
\(A=\left(1-\frac{1}{x+3}\right):3\)
thay A vào VT ta đc:\(\left(1-\frac{1}{x+3}\right):3=\frac{6}{19}\)
\(1-\frac{1}{x+3}=\frac{18}{19}\)
\(\frac{1}{x+3}=\frac{1}{19}\)
=>x+3=19
=>x=16
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ 1.4+ 1/ 4.7+ 1/ 7.10+....+1/ x.( x+ 3)= 672/ 2017
(3/1.4+3/4.7+3/7.10+...+ 3/x(x+3)).1/3=672/2017
(1/1-1/4+1/4-1/7+1/7-1/10+.....+(x+3)-x/x.(x+3)).1/3=672/2017
(1/1-1/(x+3)).1/3=672/2017
1/1-1/(x+3)= 672/2017:1/3
1/1-1/(x+3) = 2016/2017
1/(x+3)=1/1-2016/2017
1/(x+3)=1/2017
x+3=2017
x= 2017-3
x= 2014
MIK CHẮC CHẮN 100% LÀ ĐÚNG, DẠNG TOÁN NÀY MIK LM NHIỀU R
HOK TỐT
\(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{x\cdot\left(x+3\right)}=\frac{672}{2017}\)
\(\Rightarrow\frac{1}{3}\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{x\cdot\left(x+3\right)}\right)=\frac{672}{2017}\)
\(\Rightarrow\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{672}{2017}\)
\(\Rightarrow\frac{1}{3}\cdot\left(1-\frac{1}{x+3}\right)=\frac{672}{2017}\Rightarrow1-\frac{1}{x+3}=\frac{672}{2017}:\frac{1}{3}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{672}{2017}\cdot3=\frac{2016}{2017}\Rightarrow\frac{1}{x+3}=1-\frac{2016}{2017}\)
\(\Rightarrow\frac{1}{x+3}=\frac{2017}{2017}-\frac{2016}{2017}\Rightarrow\frac{1}{x+3}=\frac{1}{2017}\)
\(\Rightarrow x+3=2017\Rightarrow x=2017-3\Rightarrow x=2014\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đoạn cuối đáng là \(\frac{3}{x.\left(x+3\right)}\) nhưng bạn ghi lộn nha!
\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+3}=\frac{100}{101}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{100}{101}\)
\(\Rightarrow\frac{x+2}{x+3}=\frac{100}{101}\Rightarrow x=100-2\)
\(\Rightarrow x=98\)
\(\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{1}{x.\left(x+3\right)}=\frac{100}{101}\)
\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+........+\frac{1}{x}-\frac{1}{x+3}=\frac{100}{101}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{100}{101}\)
\(\Rightarrow\frac{1}{x+3}=1-\frac{100}{101}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{101}\)
\(\Rightarrow x+3=101\)
\(\Rightarrow x=98\)