Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,(19x+2.52):14=(13-8)2-42
(19x+2.25):14=52-42
19x+50=9.14
19x=126-50
19x=76
x=76:19=4
b,(3x-24).73=2.74
(3x-24).73=2.7.73
(3x-16).73=14.73
3x-16=14
3x=30
x=10
\(5^3.\left(3x+2\right):13=10^3:\left(13^5:13^4\right)\)
\(125.\left(3x+2\right):13=1000:13\)
\(125.\left(3x+2\right)=1000\)
\(3x+2=1000:125\)
\(3x+2=8\)
\(3x=6\)
\(x=2\)
Hok tốt nha^^
=>53.(3x+2):13=103: 13
=>53.(3x+2)=103
=>(3x+2)=53
=>3x+2=5
=>3x=3
=>x=3:3
=>x=1
a) \(3x-13=2\)
\(\Rightarrow3x=2+13\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=15:3\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
b) \(27-\left(5x+4\right)=13\)
\(\Rightarrow5x+4=27-13\)
\(\Rightarrow5x+4=14\)
\(\Rightarrow5x=14-4\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=10:5\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
c) \(2.5^x-33=2^3+3^2\)
\(\Rightarrow2.5^x-33=8+9\)
\(\Rightarrow2.5^x-33=17\)
\(\Rightarrow2.5^x=17+33\)
\(\Rightarrow2.5^x=50\)
\(\Rightarrow5^x=50:2\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
a,71.2-6.(2x+5)=10^5:10^3
142-6.(2x+5)=10^2
142-6.(2x+5)=100
6.(2x+5)=142-100
6.(2x+5)=42
2x+5=42:6
2x+5=7
2x=7-5
2x=2
x=1
Vậy x=1
Ta có : A = 2100 - ( 299 + 298 + 297 + .... + 22 + 21 + 1 )
Đặt B = 1 + 22 + 23 + .... + 298 + 299
Nhân 2 vào hai vế của B , ta được :
2B = 2.( 1 + 22 + 23 + 24 + .... + 298 + 299 )
=> 2B = 2 + 22 + 23 + 24 + 25 + .... + 299 + 2100
Lấy biểu thức 2B - B , ta được :
2B - B = ( 2 + 22 + 23 + 24 + 25 + .... + 299 + 2100 ) - ( 1 + 22 + 23 + 24 + .... + 298 + 299 )
=> B = 2100 - 1
Ta có : A = 2100 - ( 2100 - 1 )
=> A = 2100 - 2100 + 1
=> A = 1
Vậy A = 1
\(2x+5.11^0=3^2\)
\(\Rightarrow2x+5.1=9\)
\(\Rightarrow2x+5=9\)
\(\Rightarrow2x=9-5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
b) \(4\left(3x-13\right)=64:2^3\)
\(\Rightarrow4\left(3x-13\right)=64:8\)
\(\Rightarrow4\left(3x-13\right)=8\)
\(\Rightarrow3x-13=8:4\)
\(\Rightarrow3x-13=2\)
\(\Rightarrow3x=2+13\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=15:3\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
1. Ta có: 2x + 5.11^0 = 3^2
=> 2x + 5.1 = 9
=> 2x + 5 = 9
=> 2x = 9 - 5 = 4
=> x = 4 : 2 = 2
Vậy x = 2
2. Ta có: 4. ( 3x - 13 ) = 64 : 2^3
=> 4. ( 3x - 13 ) = 64 : 8 = 8
=> 3x - 13 = 8 : 4 = 2
=> 3x = 2 + 13 = 15
=> x = 15 : 3 = 5
Vậy x =5
Chúc bạn học tốt! ~
a)
\(2x+5.11^0=3^2\)
<=>\(2x+5.1=3^2\)
<=> \(2x=9-5\)
<=> \(2x=4\)
<=> \(x=2\)
Vậy x=2
b)
\(4.\left(3x-13\right)=\dfrac{64}{2^3}\)
<=> \(4\left(3x-13\right)=\dfrac{64}{8}\)
<=> \(4.\left(3x-13\right)=8\)
<=> \(3x-13=2\)
<=> \(3x=15\)
<=> \(x=5\)
Vậy x=5
\(A=2\left(x+3\right)^2-5\)
\(\left(x+3\right)^2\ge0\Rightarrow2\left(x+3\right)^2\ge0\)
\(A_{MIN}\Rightarrow2\left(x+3\right)^2_{MIN}\)
\(2\left(x+3\right)^2_{MIN}=0\)
\(A_{MIN}=0-5=-5\)
\(B=x^4+3x^2+2\)
\(x^4\ge0;x^2\ge0\Rightarrow3x^2\ge0\)
\(B_{MIN}\Rightarrow x^4_{MIN};3x^2_{MIN}\)
\(x^4_{MIN}=0;3x^2_{MIN}=0\)
\(B_{MIM}=0+0+2=2\)
\(C=\left(x^4+5\right)^2\)
\(\left(x^4+5\right)^2\ge0\)
\(C_{MIN}\Rightarrow\left(x^4+5\right)^2_{MIN}\)
\(\left(x^4+5\right)^2_{MIN}=0\)
\(\Rightarrow C_{MIN}=0\)
\(D=\left(x-1\right)^2+\left(y+2\right)^2\)
\(\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0\)
\(D_{MIN}\Rightarrow\left(x-1\right)^2_{MIN};\left(y+2\right)^2_{MIN}\)
\(\left(x-1\right)^2_{MIN}=0;\left(y+2\right)^2_{MIN}=0\)
\(D_{MIN}=0+0=0\)
a/ Ta có: \(2\left(x+3\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x+3\right)^2-5\ge-5\)
Dấu ''='' xảy ra \(\Leftrightarrow\left(x+3\right)^2=0\Rightarrow x=-3\)
Vậy \(A_{MIN}=-5\Leftrightarrow x=-3\)
b/ Có: \(\left\{{}\begin{matrix}x^4\ge0\\3x^2\ge0\end{matrix}\right.\)\(\forall x\)
\(\Rightarrow x^4+3x^2\ge0\Rightarrow x^4+3x^2+2\ge2\)
Dấu ''='' xảy ra \(\Leftrightarrow x=0\)
Vậy \(B_{MIN}=2\Leftrightarrow x=0\)
c/ Ta có: \(x^4\ge0\forall x\Rightarrow x^4+5\ge5\)
\(\Rightarrow\left(x^4+5\right)^2\ge5^2=25\)
Dấu ''='' xảy ra \(\Leftrightarrow x=0\)
Vậy \(C_{MIN}=25\Leftrightarrow x=0\)
d/ Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\Rightarrow x=1\\\left(y+2\right)^2=0\Rightarrow y=-2\end{matrix}\right.\)
Vậy \(D_{MIN}=0\) khi \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
(3x+13).23-24=22.3.23
(3x+13).23-24=276
(3x+13).23=292
3x+13=36,5
3x=23,5
x=7,8