Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(x^4+6x^2+25=\left(x^4+10x^2+25\right)-4x^2\)
\(=\left(x^2+5\right)^2-4x^2=\left(x^2+5-2x\right)\left(x^2+5+2x\right)\)
\(3x^4+4x^2+28x+5=\left(x^2-2x+5\right)\left(3x^2+6x+1\right)\)
\(\Rightarrow P\left(x\right)=x^2-2x+5\)
\(\Rightarrow P\left(1\right)=1-2+5=4\)
Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
(3x + 2)^2 + (3x - 2)^2 - 2(9x^2 - 4)
\(=\left(3x+2\right)^2-2\left(3x+2\right)\left(3x-2\right)+\left(3x-2\right)^2\)
\(=\left(3x+2-\left(3x-2\right)\right)^2\)
\(=\left(3x+2-3x+2\right)^2\)
\(=4^2\)
\(=16\)
\(\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(9x^2-4\right)\)
\(=\left(3x+2\right)^2+\left(3x-2\right)^2-2.\left(3x-2\right)\left(3x+2\right)\)
\(=\left(3x+2-3x+2\right)^2\)
\(=4^2=16\)
C1 3.10 + 4.10 + 5.10
= 30 + 40 + 50
= 120
C2: 3.10 + 4.10 + 5.10
= 10. ( 3 + 4 + 5 )
= 10. 12
= 120
Đặt \(P\left(x\right)=2x^4+3x^3-9x^2-3x+2\)
Giả sử nhân tử của P(x) có dạng : \(P\left(x\right)=2\left(x^2+ax+b\right)\left(x^2+cx+d\right)=\left(x^2+ax+b\right)\left(2x^2+2cx+2d\right)\)
Khai triển : \(P\left(x\right)=2x^4+2cx^3+2dx^2+2ax^3+2acx^2+2adx+2bx^2+2bcx+2bd\)
\(=2x^4+x^3\left(2c+2a\right)+x^2\left(2d+2ac+2b\right)+x\left(2ad+2cb\right)+2bd\)
Dùng phương pháp hệ số bất định :
\(\Rightarrow\begin{cases}2a+2c=3\\2ac+2b+2d=-9\\2ad+2bc=-3\\bd=1\end{cases}\) . Giải ra được \(\begin{cases}a=-1\\b=-1\\c=\frac{5}{2}\\d=-1\end{cases}\)
Vậy \(P\left(x\right)=2\left(x^2-x-1\right)\left(x^2+\frac{5}{2}x-1\right)=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)
mk chỉ phân tích thôi bạn tự chia nha!
a, \(16x^4-81=(4x^2)^2-9^2=(4x^2-9)(4x^2+9)\)
\(=[(2x)^2-3^2](4x^2+9)\)
\(=(2x+3)(2x-3)(4x^2+9)\)
b, \(x^3-3x^2+3x-1=(x-1)^3\)
\(x^2-2x+1=(x-1)^2\)
c, \(18x^5+9x^4+3x^3+6x^2+3x+1=(18x^5+9x^4+3x^3)+(6x^2+3x+1)\)
\(=(6x^2+3x+1)(3x^3+1)\)
câu c bạn đánh sai 1 dấu phép toán kìa!!!!
\(3x\cdot2=6x\)
cảm ơn cậu!