Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
/5x-4/=/x+2/
\(\orbr{\begin{cases}5x-4=x+2\\5x-4=-x+2\end{cases}}suyra\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
vậy x=3/2 hoặc x=1/2
a, \(4x+9\)
Để đa thức trên có nghiệm thì:
\(4x+9=0\Rightarrow x=\dfrac{-9}{4}\)
Vậy, ...
b, \(-5x+6\)
Để đa thức trên có nghiệm thì:
\(-5x+6=0\Rightarrow x=\dfrac{-6}{5}\)
Vậy, ...
c, \(x^2-1\)
Để đa thức trên có nghiệm thì:
\(x^2-1=0\Rightarrow x^2=1\Rightarrow x=\pm1\)
Vậy, ...
d, \(x^2-9\)
Để đa thức trên có nghiệm thì:
\(x^2-9=0\Rightarrow x^2=9\Rightarrow x=\pm3\)
e, \(x^2-x\)
Để đa thức trên có nghiệm thì:
\(x^2-x=0\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy, ...
f, \(x^2-2x\)
Để đa thức trên có nghiệm thì:
\(x^2-2x=0\Rightarrow x\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy, ...
g, \(x^2-3x\)
Để đa thức trên có nghiệm thì:
\(x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy, ...
h, \(3x^2-4x\)
Để đa thức trên có nghiệm thì:
\(3x^2-4x=0\Rightarrow x\left(3x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy, ...
a) \(\text{}/3x-5/-\frac{1}{7}=\frac{1}{3}\) b)\(\left(\frac{3}{5}x-\frac{2}{3}x-x\right).\frac{1}{7}=\frac{-5}{21}\)
\(/3x-5/=\frac{10}{21}\) \([x.\left(\frac{3}{5}-\frac{2}{3}-1\right)]=\frac{-5}{21}.7\)
\(\Rightarrow3x-5=\frac{10}{21}hay3x-5=\frac{-10}{21}\) \(\left[x.\frac{-16}{15}\right]=\frac{-5}{3}\)
\(3x=\frac{115}{21}\) \(3x=\frac{95}{21}\) \(x=\frac{25}{16}\)
\(x=\frac{115}{63}\) \(x=\frac{95}{63}\) Vậy x = \(\frac{25}{16}\)
Vậy x \(\in\left\{\frac{115}{63};\frac{95}{63}\right\}\)
P(x)=2x^4+2x^3-5x+3
Q(x)=4x^4-2x^3+2x^2+5x-2
P(x)+Q(x)
=2x^4+2x^3-5x+3+4x^4-2x^3+2x^2+5x-2
=6x^4+2x^2+1
1. 2x = 3y-2
2x+2x = 3y
4x = 3y
=> \(\frac{x}{3}=\frac{y}{y}\Rightarrow\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> \(\frac{x}{3}=2\Rightarrow x=6\)
=> \(\frac{y}{4}=2\Rightarrow y=8\)
\(A=\frac{x-2}{x+2}=\frac{x^2-4x+4}{x^2-4}=\frac{x^2-4-4x+8}{x^2-4}=1+\frac{-4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=1-\frac{4}{x+2}\)
Để \(A\in Z\) thì \(\frac{4}{x+2}\in Z\Leftrightarrow x+2\inƯ\left(4\right)\)
\(\Rightarrow x\in\left\{-6;-4;-3;-1;0;2\right\}\)
\(B=\frac{3x-6}{x+6}=\frac{3x+18-24}{x+6}=\frac{3\left(x+6\right)}{x+6}-\frac{24}{x+6}=3-\frac{24}{x+6}\)
Để \(B\in Z\) thì \(\frac{24}{x+6}\in Z\Leftrightarrow x+6\inƯ\left(24\right)\)
\(\Rightarrow x\in\left\{-30;-18;-14;-12;-10;-9;-8;-7;-5;-4;-3;-2;0;2;6;18\right\}\)
\(C=\frac{10-5x}{x-5}=\frac{-\left(5x-25+15\right)}{x-5}=\frac{-5\left(x-5\right)}{x-5}-\frac{15}{x-5}=-5-\frac{15}{x-5}\)
Để \(C\in Z\) thì \(\frac{15}{x-5}\in Z\Leftrightarrow x-5\inƯ\left(15\right)\)
\(\Rightarrow x\in\left\{-10;0;4;6;10;20\right\}\)
\(D=\frac{8x-2}{2-4x}=\frac{-\left(4-8x\right)+2}{2\left(1-2x\right)}=\frac{-4\left(1-2x\right)}{2\left(1-2x\right)}+\frac{2}{2\left(1-2x\right)}=-2+\frac{1}{1-2x}\)
Để \(D\in Z\) thì \(\frac{1}{1-2x}\in Z\Leftrightarrow1-2x\inƯ\left(1\right)\)
\(\Rightarrow x=0\)
a) (5x+1)2 - (5x+3)(5x-3)=30
=> 25x2 +50x +1 - (25x2-9)=30
=> 25x2 + 50x +1 - 25x2 + 9 = 30
=> 50x = 30 - 9 -1
=> 50x = 20
=> x= 2/5
#)Giải :
a) \(\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Rightarrow25x^2+10x+1-25x^2+9=30\)
\(\Rightarrow\left(25x^2-25x^2\right)+10x+1+9=30\)
\(\Rightarrow10x+10=30\)
\(\Rightarrow x=2\)
b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Rightarrow x^3-27-x\left(x^2-4\right)=15\)
\(\Rightarrow x^3-27x-x^3+4x=15\)
\(\Rightarrow4x-27=15\)
\(\Rightarrow4x=42\)
\(\Rightarrow x=\frac{21}{2}\)
3x-6/20=5x-9/30
x=0