Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
2(x - 3) + 5 = 3x - 1
2x-6+5=3x-1
2x-1=3x-1
2x-3x=-1+1
-x=0
x=0
2x(3x + 2) - 5 = 3( 2x^2 - 2x + 1)
6x2+4x-5=6x2-6x+3
6x2+4x-6x2+6x=3+5
10x=8
x=4/5
(3x - 2)(2x - 3) + 5 = 5
(3x-2)(2x-3)=0
=>3x-2=0 hoặc 2x-3=0
=>x=2/3 hoặc x=3/2
a) \(\left|2x-5\right|=x+1\)
<=> \(\orbr{\begin{cases}2x-5=x+1\left(x\ge\frac{5}{2}\right)\\5-2x=x+1\left(x< \frac{5}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\left(ktm\right)\\3x=4\end{cases}}\)
<=> \(x=\frac{4}{3}\left(tm\right)\)
b) \(\left|3x-2\right|-1=2x\) <=> \(\left|3x-2\right|=2x+1\)
<=> \(\orbr{\begin{cases}3x-2=2x+1\left(x\ge\frac{2}{3}\right)\\2-3x=2x+1\left(x< \frac{2}{3}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-3\left(ktm\right)\\5x=1\end{cases}}\) <=> \(x=\frac{1}{5}\left(tm\right)\)
c) \(\left|x-5\right|+5=x\) <=> \(\left|x-5\right|=x-5\)
<=> \(\orbr{\begin{cases}x-5=x-5\left(x\ge5\right)\\5-x=x-5\left(x< 5\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}0x=0\\2x=10\end{cases}}\) <=> 0x = 0 (luôn đúng) hoặc x = 5 (ktm)
Vậy x \(\ge\)5
d) \(\left|3x-5\right|=3x-5\) <=> \(\orbr{\begin{cases}3x-5=3x-5\left(x\ge\frac{5}{3}\right)\\5-3x=3x-5\left(x< \frac{5}{3}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}0x=0\left(luônđúng\right)\\6x=10\end{cases}}\)
<=> \(\orbr{\begin{cases}x\ge\frac{5}{3}\\x=\frac{5}{3}\left(ktm\right)\end{cases}}\)Vậy x \(\ge\)5/3
Bài 1:
- \(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1
-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)
- \(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))
\(x\) = \(\dfrac{3}{14}\)
Vậy \(x=\dfrac{3}{14}\)
Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1
2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)
- 5\(x\) = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\)
- 5\(x\) = \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{7}{6}\) : (- 5)
\(x\) = - \(\dfrac{7}{30}\)
Vậy \(x=-\dfrac{7}{30}\)
a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)
=>-38x=7
hay x=-7/38
b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)
=>1/2x=0
hay x=0
c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)
=>-29x=15
hay x=-15/29
d: \(\Leftrightarrow x^2+2x-x-3=5\)
\(\Leftrightarrow x^2+x-8=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)
e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)
\(\Leftrightarrow-25x^2=4\)
\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)
a) \(2x\left(x-3\right)+6\left(3x-3\right)=0\)
\(\Leftrightarrow2x^2-6x+18x-18=0\)
\(\Leftrightarrow2x^2+12x-18=0\)
Mà \(2x^2\ge0\)
\(\Rightarrow x\in\varnothing\)
a)=>2x^2-6x+18x-18=0 b)=>6x^2-15x-75-30x =????
=>2x^2+12x=0+18
=>2x^2+12x=18
=>x.(2x+12)=18 (tự làm phần còn lai)
a) A(x) = f(x) + g(x)
= (3x4 - 5 + 2x5 - 6x3 + 2x2 + 4x) + (3x - x2 + 5 - 2x5 - 3x4 + 6x3)
= 3x4 - 5 + 2x5 - 6x3 + 2x2 + 4x + 3x - x2 + 5 - 2x5 - 3x4 + 6x3
= x2 + 7x
Vậy A(x) = x2 + 7x
b) Đặt A(x) = 0, ta có:
A(x) = x2 + 7x = 0
=> x(x + 7) = 0
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+7=0\Rightarrow x=-7\end{matrix}\right.\)
Vậy nghiệm của A(x) là x = 0 hoặc x = -7
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
\(\left|3x-5\right|=5-2x\)
TH1: nếu x là số tự nhiên
\(\Rightarrow3x-5=5-2x\)
\(\Leftrightarrow5x=10\rightarrow x=2\)
TH2: nếu x nhỏ hơn 0
\(\Rightarrow5-3x=5-2x\)
\(\Leftrightarrow-x=0\rightarrow x=0\)