Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(x-1\right)^{2012}\ge0\forall x;\left(y-2\right)^{2010}\ge0\forall y;\left(x-z\right)^{2008}\ge0\forall x;z\)
Mà theo đề bài
\(\Rightarrow\hept{\begin{cases}x-1=0\\y-2=0\\x-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}}\)
Vậy x = z = 1 và y = 2
Ta có:
\(\left(x-1\right)^{2012}\ge0\)
\(\left(y-2\right)^{2010}\ge0\)
\(\left(x-z\right)^{2008}\ge0\)
\(\Rightarrow\left(x-1\right)^{2012}+\left(y-2\right)^{2010}+\left(x-z\right)^{2008}=0\)Khi \(\hept{\begin{cases}\left(x-1\right)^{2012}=0\\\left(y-2\right)^{2010}=0\\\left(x-z\right)^{2008}=0\end{cases}}\)
Từ đó ta tính được x=1; y=2; z=1
(x-1)200+(y+2)300=0
(x-1)^200 > 0 ; (y+2)^300>0
=> (x-1)^200 = 0 và (y + 2)^300 = 0
=> x - 1 = 0 và y + 2 = 0
=> x = 1 và y = - 2
thay vào rồi tính như bình thường thôi
Vì \(\left(x-1\right)^{200}\ge0\forall x\); \(\left(y+2\right)^{300}\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}\ge0\)
mà \(\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)( giả thiết )
\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay \(x=1\)và \(y=-2\)vào biểu thức ta được:
\(P=2.1^{100}-5.\left(-2\right)^3+4=2-5.\left(-8\right)+4=2+5.8+4\)
\(=2+40+4=46\)
Ta có: (3x-5)2006\(\ge\)0
(y2-1)2008\(\ge\)0
(x-z)2100\(\ge\)0
Mà (3x-5)2006+(y2-1)2008+(x-z)2100=0
=>\(\hept{\begin{cases}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{cases}}\)
=>\(\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)
=>\(\hept{\begin{cases}3x=5\\y^2=1\\x-z=0\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{5}{3}\\y\in\left\{1;-1\right\}\\z=\frac{5}{3}\end{cases}}\)
Ta có: \(\left(3x-5\right)^{2006}\ge0,\forall x\\ \left(y^2-1\right)^{2008}\ge0,\forall y\\ \left(x-z\right)^{2100}\ge0,\forall x,z\)
Mà tổng của chúng bằng 0.
\(\hept{\begin{cases}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{cases}}\)<=>\(\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)<=>\(\hept{\begin{cases}3x=5\\y^2=1\\x=z\end{cases}}\)<=>\(\hept{\begin{cases}x=\frac{5}{3}\\y=\pm1\\z=\frac{5}{3}\end{cases}}\)
Vậy x = z = \(\frac{5}{3}\), y = \(\pm1\).