K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

Ta có: (3x-5)2006\(\ge\)0

           (y2-1)2008\(\ge\)0

             (x-z)2100\(\ge\)0

Mà (3x-5)2006+(y2-1)2008+(x-z)2100=0

=>\(\hept{\begin{cases}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{cases}}\)

=>\(\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)

=>\(\hept{\begin{cases}3x=5\\y^2=1\\x-z=0\end{cases}}\)

=>\(\hept{\begin{cases}x=\frac{5}{3}\\y\in\left\{1;-1\right\}\\z=\frac{5}{3}\end{cases}}\)

19 tháng 2 2021

Ta có: \(\left(3x-5\right)^{2006}\ge0,\forall x\\ \left(y^2-1\right)^{2008}\ge0,\forall y\\ \left(x-z\right)^{2100}\ge0,\forall x,z\)

Mà tổng của chúng bằng 0.

\(\hept{\begin{cases}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{cases}}\)<=>\(\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)<=>\(\hept{\begin{cases}3x=5\\y^2=1\\x=z\end{cases}}\)<=>\(\hept{\begin{cases}x=\frac{5}{3}\\y=\pm1\\z=\frac{5}{3}\end{cases}}\)

Vậy x = z = \(\frac{5}{3}\), y = \(\pm1\).

28 tháng 11 2018

Vì \(\left(x-1\right)^{2012}\ge0\forall x;\left(y-2\right)^{2010}\ge0\forall y;\left(x-z\right)^{2008}\ge0\forall x;z\)

Mà theo đề bài

\(\Rightarrow\hept{\begin{cases}x-1=0\\y-2=0\\x-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}}\)

Vậy x = z = 1 và y = 2

Ta có:

\(\left(x-1\right)^{2012}\ge0\)

\(\left(y-2\right)^{2010}\ge0\)

\(\left(x-z\right)^{2008}\ge0\)

\(\Rightarrow\left(x-1\right)^{2012}+\left(y-2\right)^{2010}+\left(x-z\right)^{2008}=0\)Khi \(\hept{\begin{cases}\left(x-1\right)^{2012}=0\\\left(y-2\right)^{2010}=0\\\left(x-z\right)^{2008}=0\end{cases}}\)

Từ đó ta tính được x=1; y=2; z=1

19 tháng 4 2020

a) \(-\frac{x^{13}y^{12}}{75}\)

b) \(\frac{1024x^{70}y^{70}}{282475249}\)

c) \(-\frac{x^6y^9z^6}{2}\)

d) \(-\frac{u^3v^4}{2}\)

10 tháng 4 2018

Mình làm được bài 1, 2, 3 rồi. Các bạn giúp bài 4 nhé ! THANK YOU

10 tháng 4 2018

Có: \(\hept{\begin{cases}\left|7x-5y\right|\ge0\\\left|2z-3x\right|\ge0\\\left|xy+yz+zx-2000\right|\ge0\end{cases}}\)

\(\Rightarrow A=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\ge0\)

Dấu "="....

10 tháng 2 2016

Y2x2z2

duyet di

10 tháng 2 2016

tính hẳn ra đi

10 tháng 3 2019

bài đây 0 phù hợp với toán lớp 7.

Đề tự chế

Ko giải 

10 tháng 3 2019

Tại 5xnhé tớ ghi sai đề

12 tháng 2 2016

vì x,y khác 0 => xy cũng khác 0

mà 1/xy=0 hơi vô lý...........?

 

12 tháng 9 2015

ĐỀ SAI RỒI BẠN MÌNH LÀM RỒI MÀ SAI KẾT QUẢ 

10 tháng 2 2020

 (x-1)200+(y+2)300=0 

(x-1)^200 > 0 ; (y+2)^300>0

=> (x-1)^200 = 0 và (y + 2)^300 = 0

=> x - 1 = 0 và y + 2 = 0

=> x = 1 và y = - 2

thay vào rồi tính như bình thường thôi

10 tháng 2 2020

Vì \(\left(x-1\right)^{200}\ge0\forall x\)\(\left(y+2\right)^{300}\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}\ge0\)

mà \(\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)( giả thiết )

\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay \(x=1\)và \(y=-2\)vào biểu thức ta được:

\(P=2.1^{100}-5.\left(-2\right)^3+4=2-5.\left(-8\right)+4=2+5.8+4\)

\(=2+40+4=46\)