![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow3^x\cdot82=3^{50}+3^{54}\)
hay x=50
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(5^n.25=125^2\)
\(\Rightarrow5^n.5^2=\left(5^3\right)^2\)
\(\Rightarrow5^n.5^2=5^6\)
\(\Rightarrow5^n=5^6:5^2\)
\(\Rightarrow5^n=5^4\)
\(\Rightarrow n=4\)
Vậy \(n=4.\)
b) \(3^n.9^2=27^3\)
\(\Rightarrow3^n.\left(3^2\right)^2=\left(3^3\right)^3\)
\(\Rightarrow3^n.3^4=3^9\)
\(\Rightarrow3^n=3^9:3^4\)
\(\Rightarrow3^n=3^5\)
\(\Rightarrow n=5\)
Vậy \(n=5.\)
c) \(2^4.4^n=8^6\)
\(\Rightarrow\left(2^2\right)^2.4^n=2^{18}\)
\(\Rightarrow4^2.4^n=\left(2^2\right)^9\)
\(\Rightarrow4^2.4^n=4^9\)
\(\Rightarrow4^n=4^9:4^2\)
\(\Rightarrow4^n=4^7\)
\(\Rightarrow n=7\)
Vậy \(n=7.\)
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
a, (-0,2)2 \(\times\) 5 - \(\dfrac{2^{13}\times27^3}{4^6\times9^5}\)
= 0,04 \(\times\) 5 - \(\dfrac{2^{13}\times3^9}{2^{12}\times3^{10}}\)
= 0,2 - \(\dfrac{2}{3}\)
= \(\dfrac{2}{10}\) - \(\dfrac{2}{3}\)
= - \(\dfrac{7}{15}\)
b, \(\dfrac{5^6+2^2.25^3+2^3.125^2}{26.5^6}\)
= \(\dfrac{5^6+4.5^6+8.5^6}{26.5^6}\)
= \(\dfrac{5^6.\left(1+4+8\right)}{26.5^6}\)
= \(\dfrac{1}{2}\)
a, (-0,2)2 ×× 5 - 213×27346×9546×95213×273
= 0,04 ×× 5 - 213×39212×310212×310213×39
= 0,2 - 2332
= 210102 - 2332
= - 715157
b, 56+22.253+23.125226.5626.5656+22.253+23.1252
= 56+4.56+8.5626.5626.5656+4.56+8.56
= 56.(1+4+8)26.5626.5656.(1+4+8)
= 1221
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(3^x=\dfrac{9^8}{27^3\cdot81^2}\)
\(\Rightarrow3^x=\dfrac{\left(3^2\right)^8}{\left(3^3\right)^3\cdot\left(3^4\right)^2}\)
\(\Rightarrow3^x=\dfrac{3^{16}}{3^{15}}\)
\(\Rightarrow3^x=3\)
\(\Rightarrow x=1\)
2) \(\dfrac{2^{4-x}}{16^5}=32^6\)
\(\Rightarrow\dfrac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
\(\Rightarrow\dfrac{2^{4-x}}{2^{20}}=2^{30}\)
\(\Rightarrow2^{4-x}=2^{20}\cdot2^{30}\)
\(\Rightarrow2^{4-x}=2^{50}\)
\(\Rightarrow4-x=50\)
\(\Rightarrow x=-46\)
3) \(\dfrac{2^{2x-3}}{4^{10}}=8^3\cdot16^5\)
\(\Rightarrow\dfrac{2^{2x-3}}{\left(2^2\right)^{10}}=\left(2^3\right)^3\cdot\left(2^4\right)^5\)
\(\Rightarrow\dfrac{2^{2x-3}}{2^{20}}=2^{29}\)
\(\Rightarrow2^{2x-3}=2^{49}\)
\(\Rightarrow2x-3=49\)
\(\Rightarrow2x=52\)
\(\Rightarrow x=26\)
![](https://rs.olm.vn/images/avt/0.png?1311)
= \(\dfrac{1}{9}\cdot x^2\cdot y^3\cdot z\cdot27\cdot y\cdot z^7=3\cdot x^2\cdot y^4\cdot z^8\)
Ta có: \(-\dfrac{1}{9}x^2y^3z\cdot\left(-27yz^7\right)\)
\(=\left[\left(-\dfrac{1}{9}\right)\cdot\left(-27\right)\right]\cdot x^2\cdot\left(y^3\cdot y\right)\cdot\left(z\cdot z^7\right)\)
\(=3x^2y^4z^8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\dfrac{49}{81}=\dfrac{7^x}{9^x}\)(sửa đề)
\(\Leftrightarrow\left(\dfrac{7}{9}\right)^2=\left(\dfrac{7}{9}\right)^x\)\(\Rightarrow x=2\)
b) \(\dfrac{-64}{343}=\left(-\dfrac{4^x}{7^x}\right)\)(sửa đề)
\(\Leftrightarrow\left(-\dfrac{4}{7}\right)^3=\left(-\dfrac{4}{7}\right)^x\) \(\Rightarrow x=3\)
c) \(\dfrac{9}{144}=\dfrac{3^x}{12^x}\)(sửa đề)
\(\Leftrightarrow\left(\dfrac{3}{12}\right)^2=\left(\dfrac{3}{12}\right)^x\Rightarrow x=2\)
d) \(-\dfrac{1}{32}=\left(-\dfrac{1^x}{2^x}\right)\)(sửa đề)
\(\Leftrightarrow\left(-\dfrac{1}{2}\right)^5=\left(-\dfrac{1}{2}\right)^x\Rightarrow x=5\)
Mong bạn xem lại đề bài.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{a, 3(x+1)+4x=10}\)
\(\Rightarrow3x+3+4x=10\)
\(\Rightarrow7x+3=10\)
\(\Rightarrow7x=10-3=7\)
\(\Rightarrow x=1\)
c, x+1/10+x+2/9=x+3/8+x+4/7
=> (x+1/10 +1) +(x+2/9 +1)= ( x+3/8 +1) +(x+4/7 +1)
=> x+11/10 + x+11/9 = x+11/8 + x+11/7
...............
a) \(3\left(x+1\right)+4x=10\)
\(\Rightarrow3x+3+4x=10\)
\(\Rightarrow3x+4x=10-3\)
\(\Rightarrow7x=7\)
\(\Rightarrow x=7\)
\(3^x+3^{x+4}=9^{25}+27^{18}\)
\(\Leftrightarrow3^x+3^x.3^4=\left(3^2\right)^{25}+\left(3^3\right)^{18}\)
\(\Leftrightarrow3^x\left(1+3^4\right)=3^{50}+3^{54}=3^{50}\left(1+3^4\right)\)
\(\Leftrightarrow3^x=3^{50}\)
\(\Leftrightarrow x=50\)