Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho
a, (5x+7)(2x-1) <0
<=> \(\hept{\begin{cases}5x+7< 0\\2x-1>0\end{cases}}\)<=> \(\hept{\begin{cases}5x< 7\\2x< 1\end{cases}}\)
<=> \(\hept{\begin{cases}5x+7>0\\2x-1< 0\end{cases}}\)<=> ..................
(5x+7)(2x-1) =0
<=> \(\orbr{\begin{cases}5x+7=0\\2x-1=0\end{cases}}\)<=> ..................
1 . \(\left(3x-2\right)^{10}=\left(3x-2\right)^7\)
<=> \(\left(3x-2\right)^{10}-\left(3x-2\right)^7=0\)
<=> \(\left(3x-2\right)^7.\left[\left(3x-2\right)^3-1\right]=0\)
<=> \(\orbr{\begin{cases}3x-2=0\\\left(3x-2\right)^3=1\end{cases}}\) <=> \(\orbr{\begin{cases}3x=2\\3x-2=1\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{2}{3}\\3x=3\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{2}{3}\\x=1\end{cases}}\)
vậy .....
b) \(\left|5-3x\right|< 2\)
Ta tách ra thành 2 trường hợp:
\(5-3x< 2;5-3x\ge0\)
\(-\left(5-3x\right)< 2;5-3x< 0\)
Giải 2 trường hợp và tìm x:
\(x>1;x\le\frac{5}{3}\)
\(x< \frac{7}{3};x>\frac{5}{3}\)
\(\Rightarrow x\in\text{⟨}1;\frac{7}{3}\text{⟩}\)
Ta có:\(\left|-2x^4-x^2-9\right|=\left|2x^4+x^2+9\right|\) vì ta có tính chất \(\left|a\right|=\left|-a\right|\)
Áp dụng bất đẳng thức trị tuyệt đối,ta có:
\(A=\left|2x^4+3x^2+9\right|-\left|2x^4+x^2+9\right|=\left|2x^4+4x^2+9-2x^4-x^2-9\right|=3x^2\ge0\) với \(\forall x\)
Tự tìm dấu bằng xảy ra -.-
=>1-3x= x-7 hoặc 1-3x=-x+7
=>1+7=4x hoặc 1-7=2x
=>x=2 hoặc x=-3
\(3x\left(2x-1\right)\ge0\)
Trường hợp 1: \(3x\ge0;2x-1\ge0\)
\(\Leftrightarrow x\ge0;x\ge\frac{1}{2}\)
\(\Leftrightarrow x\ge\frac{1}{2}\)
Trường hợp 2: \(3x\le0;2x-1\le0\)
\(\Leftrightarrow x\le0;x\le\frac{1}{2}\)
\(\Leftrightarrow x\le0\)