Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
(2^4 x 5^2 x 11^2 x 7) : (2^3 x 5^3 x 7^2 x 11)
= (2^3 x 2 x 5^2 x 11 x 77) : ( 2^3 x 5^2 x 5 x 7 x 77) bỏ những số trùng nhau vì là phép nhân
= (2 x 11) : (5 x 7)
= 22/35
599 - 42 x 597 - 32 x 59
= 597.(52 - 42) - 32.59
= 597.(25 - 16) - 32.59
= 597.9 - 9.59
ta có 1/2mũ 2 +1/3 mũ 2+1/4 mũ 2+...+1/100 mũ 2=1/2.2+1/3.3+1/4.4+...+1/100.100<1/2.3+1/3.4+1/4.5+...+1/99.100+1/100.101=1/2.3-1/100.101=1/6-1/10100=tự tính nhé
a) \(\left(3^4.57-9^2.21\right):3^5\)
\(=\left(3^4.57-3^4.21\right):3^5\)
\(=\left[3^4\left(57-21\right)\right]:3^5\)
\(=3^4.36:3^5\)
\(=3^4.2^2.3^2:3^5\)
\(=3.4\)
\(=12\)
b) Ta có; \(1^3+2^3+...+9^3=2025\)
\(\Leftrightarrow2^3.\left(1^3+2^3+....+9^3\right)=2^3.2025\)
\(\Leftrightarrow2^3+4^5+...+18^3=16200\)
\(S=1+2+2^2+...+2^9\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{10}\)
\(\Rightarrow S=2^{10}-1\)
Lại có \(5.2^8=\left(2^2+1\right).2^8=2^{10}+2^8\)
Vậy \(S< 5.2^8\)