Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta co :
\(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(3^{20}=\left(3^2\right)^{10}=9^{10}\)
Vì \(8^{10}< 9^{10}\)
\(\Rightarrow2^{30}< 3^{20}\)
b)
Ta có :
\(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4.55\)
=> đpcm
a)Ta có:
230 = (23)10 = 810
320 = ( 32 )10 = 910
Vì 810 < 910 => 230 < 320
b) 76 + 75 - 74
= 74 (72 + 7 - 1 )
= 74 *55 chia hết 55
Đpcm
a: Gọi D là điểm đối xứng của A qua M
Xét tứ giác ABDC có
M là trung điểm của đường chéo BC
M là trung điểm của đường chéo AD
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: AD=BC
mà \(AM=\dfrac{1}{2}AD\)
nên \(AM=\dfrac{1}{2}BC\)
\(3x^2+5x-2=0\)
\(\Leftrightarrow3x^2-x+6x-2=0\)
\(\Leftrightarrow x\left(3x-1\right)+2\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-2\end{cases}}}\)
Vậy ...
\(3x^2+5x-2=0\)
\(\Leftrightarrow3x^2+6x-x-2=0\)
\(\Leftrightarrow3x\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\3x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}\)
P/s : mk làm câu b trc câu a hơi rắc rối làm sau
| 2x - 1/3 | - 5 = 0
| 2x - 1/3 | = 5
+) 2x - 1/3 = 5
2x = 16/3
x = 8/3
+) 2x - 1/3 = -5
2x = -14/3
x = -7/3
Vậy,........
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{-30}{15}=-2\)
\(\Rightarrow\hept{\begin{cases}3x=\left(-2\right).63=-126\Rightarrow x=-\frac{126}{3}=-42\\7y=\left(-2\right).98=-196\Rightarrow y=-\frac{196}{7}=-28\\5z=\left(-2\right).50=-100\Rightarrow z=-\frac{100}{5}=-20\end{cases}}\)
Vậy \(x=-42;y=-28;z=-20\).
Ta có :
2x=3y\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14};\)\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\)\(\frac{3x-7y+5z}{63-98+50}\)\(=\frac{-30}{15}=-2\)
\(\frac{x}{21}=-2\Rightarrow x=-42\)
\(\frac{y}{14}=-2\Rightarrow y=-28\)
\(\frac{z}{10}=-2\Rightarrow z=-20\)
Vậy x;y;z lần lượt là -42;-28;-20
ĐKXĐ: x khác -2
\(A=\frac{2x^2+3x-2}{x+2}=0\Leftrightarrow2x^2+3x-2=0\Leftrightarrow2\left(x^2+\frac{3}{2}x-1\right)=0\)
\(\Leftrightarrow x^2+\frac{3}{2}x-1=0\Leftrightarrow x^2+2.\frac{3}{4}.x+\frac{9}{16}-\frac{25}{16}=0\Leftrightarrow\left(x+\frac{3}{4}\right)^2-\frac{25}{16}=0\)
\(\Leftrightarrow\left(x+\frac{3}{4}\right)^2=\frac{25}{16}\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{4}=\frac{-5}{4}\\x+\frac{3}{4}=\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\left(loai\right)\\x=\frac{1}{2}\left(nhan\right)\end{cases}}\)
Vậy .............