Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://coccoc.com/search?query=%E2%88%9B%28x-20%29%2B%E2%88%9A%28x%2B15%29%3D7
1/
Ta có: \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)
\(\sqrt{24}^2\)= 24 = 16 + 8
Vì: \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)
Nên: \(\sqrt{15}< 4\)
=> \(2\sqrt{15}< 8\)
=> \(16+2\sqrt{15}< 24\)
=> \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
2/
b/ \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)
<=> \(3x-7\sqrt{x}-20=0\)
<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)
<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)
<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)
<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)
<=> \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)
<=> \(x=16\)
Vậy S=\(\left\{16\right\}\)
c/ \(1+\sqrt{3x}>3\)
<=> \(\sqrt{3x}>2\)
<=> \(3x>4\)
<=> \(x>\frac{4}{3}\)
d/ \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))
<=> \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)
<=> \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\)
<=> \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)
<=> \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)
<=> \(x+1=0\) hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)
<=> \(x=-1\)(loại) hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)
Vậy S={ 9 }
a) \(5x^3+6x^2+12x+8=0\)
\(\Leftrightarrow x^3+3.2.x^2+3.2^2.x+2^3+4x^3=0\)
\(\Leftrightarrow\left(x+2\right)^3=-4x^3\)
\(\Leftrightarrow x+2=-x\sqrt[3]{4}\)
\(\Leftrightarrow x\left(1+\sqrt[3]{4}\right)=-2\)\(\Leftrightarrow x=\frac{-2}{1+\sqrt[3]{4}}\)
b) ĐK: \(x\ge15\)
Đặt \(\sqrt[3]{x-20}=a\);\(\sqrt{x-15}=b\ge0\)
ta có: \(a^3-b^2=x-20-x+15=-5\)
\(\Rightarrow\hept{\begin{cases}a+b=7\\a^3+b^2=-5\end{cases}}\)
Giải hệ rùi thay vào thôi
Giải:
a) \(\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)
\(\Leftrightarrow\sqrt{4\left(x-5\right)}-3\sqrt{x-5.\dfrac{1}{9}}=\sqrt{1-x}\)
\(\Leftrightarrow2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)
\(\Leftrightarrow\sqrt{x-5}=\sqrt{1-x}\)
\(\Leftrightarrow x-5=1-x\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
b) \(\sqrt{4x+8}+2\sqrt{x+2}-\sqrt{9x+18}=1\)
\(\Leftrightarrow\sqrt{4\left(x+2\right)}+2\sqrt{x+2}-\sqrt{9\left(x+2\right)}=1\)
\(\Leftrightarrow2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)
\(\Leftrightarrow\sqrt{x+2}=1\)
\(\Leftrightarrow x+2=1\)
\(\Leftrightarrow x=-1\)
d) \(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}\right)^2-7^2}=2\)
\(\Leftrightarrow\sqrt{x-49}=2\)
\(\Leftrightarrow x-49=4\)
\(\Leftrightarrow x=53\)
Vậy ...
Câu c bạn xem lại đề, mình làm không ra, kết quả xấu
ĐKXĐ:...
f/ \(2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\Rightarrow\sqrt{x+5}=2\)
\(\Rightarrow x+5=4\Rightarrow x=-1\)
g/ \(3\left|x-1\right|=15\)
\(\Rightarrow\left|x-1\right|=5\)
\(\Rightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
i/ \(3x-7+\sqrt{3x-7}=0\)
\(\Leftrightarrow\sqrt{3x-7}\left(\sqrt{3x-7}+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-7}=0\\\sqrt{3x-7}=-1\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=\frac{7}{3}\)
k/ \(\sqrt{2x+5}=x+3\) (\(x\ge-3\))
\(\Leftrightarrow2x+5=\left(x+3\right)^2\)
\(\Leftrightarrow x^2+4x+4=0\)
\(\Leftrightarrow\left(x+2\right)^2=0\Rightarrow x=-2\)
Hãy tích cho tui đi
khi bạn tích tui
tui không tích lại bạn đâu
THANKS
5:x^2 +4x +5x + 20 =0
(x^2 + 4x).(5x+20)
x(x+4).5(x+4)
(x+4).(x+5)
[x+5=0 ->x=-5
[x+4=0 ->x=-4
\(\sqrt[3]{x}-20+\sqrt{x}+15=7\)
\(\sqrt[3]{x}-20+15+\sqrt{x}=7\)
\(\sqrt[3]{x}-5+\sqrt{x}=7\)
\(\sqrt[3]{x}+\sqrt{x}=7+5\)
\(\sqrt[3]{x}+\sqrt{x}=12\)
còn lại mình chịu
\(\sqrt[3]{x}+\sqrt{x}=12=8+4\)
\(\sqrt[3]{x}=8\) và \(\sqrt{x}=4\)
Vậy x = 2