Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^3=6+3x.\sqrt[3]{9-8}\Leftrightarrow x^3-3x=6\)
\(y^3=34+3y\sqrt[3]{17^2-12^2.2}\Leftrightarrow y^3-3y=34\)
=>B = 6 + 34 + 2017 =2057
Ta có:
x3=6+3x.3√9−8⇔x3−3x=6
y3=34+3y3√172−122.2⇔y3−3y=34
Nên ta suy ra được => B = 6 + 34 + 2017 =2057
Chúc bạn học tốt :)))
a) 4x2 - 12x = 0
=> 4x.( x- 3) = 0
=> 4x =0 hoặc x - 3 = 0 => x = 3
Vậy x = 0 ; x = 3
b) x3 - 0,16x = 0
=> x.( x2 - 0,16 ) = 0
=> x = 0 hoặc x2 - 0,16 = 0
=> x2 = 0,16
=> x = 0, 4 hoặc x = -0,4
Vậy x = 0 ; x = 0,4 ; x = -0,4
\(\frac{x+3}{x-3}-\frac{17}{x^2-9}=\frac{x-3}{x+3}\left(x\ne\pm3\right)\)
\(\Leftrightarrow\frac{x+3}{x-3}-\frac{17}{\left(x-3\right)\left(x+3\right)}-\frac{x-3}{x+3}=0\)
\(\Leftrightarrow\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\frac{17}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}-\frac{17}{\left(x-3\right)\left(x+3\right)}-\frac{x^2-6x+9}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+6x+9-17-x^2+6x-9}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{12x-17}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Rightarrow12x-17=0\)
\(\Leftrightarrow12x=17\)
\(\Leftrightarrow x=\frac{17}{12}\left(tmđk\right)\)
1/ \(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
=> \(\frac{9\left(x+3\right)}{12}+\frac{6}{12}=\frac{4\left(5x+9\right)}{12}-\frac{3\left(7x-9\right)}{12}\)
=> \(9\left(x+3\right)+6=4\left(5x+9\right)-3\left(7x-9\right)\)
=> \(9x+27+6=20x+36-21x+27\)
=> \(9x-20x+21x=27-27-6+36\)
=> \(10x=30\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
2.Ta có : \(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)
=> \(\frac{10\left(2x-3\right)}{30}-\frac{5\left(x-3\right)}{30}=\frac{6\left(4x+3\right)}{30}-\frac{510}{30}\)
=> \(10\left(2x-3\right)-5\left(x-3\right)=6\left(4x+3\right)-510\)
=> \(20x-30-5x+15=24x+18-510\)
=> \(20x-5x-24x=18-510+30-15\)
=> \(-9x=-477\)
=> \(x=53\)
Vậy phương trình có tập nghiệm là \(S=\left\{53\right\}\)
3/ Ta có : \(\frac{5x-1}{6}+\frac{2\left(x+4\right)}{9}=\frac{7x-5}{15}+x-1\)
=> \(\frac{30\left(5x-1\right)}{180}+\frac{40\left(x+4\right)}{180}=\frac{12\left(7x-5\right)}{180}+\frac{180x}{180}-\frac{180}{180}\)
=> \(30\left(5x-1\right)+40\left(x+4\right)=12\left(7x-5\right)+180x-180\)
=> \(150x-30+40x+160=84x-60+180x-180\)
=> \(150x+40x-180x-84x=-60-180-160+30\)
=> \(-74x=-370\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
\(\Leftrightarrow\left(\frac{x+1}{2009}+1\right)\left(\frac{x+2}{2008}+1\right)\left(\frac{x+17}{1993}+1\right)=0\) 0
\(\Leftrightarrow\frac{x+2020}{2009}\cdot\frac{x+2020}{2008}\cdot\frac{x+2020}{1993}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{1993}\right)=0\)
\(\Rightarrow x+2020=0\)(do \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{1993}\ne0\)
\(\Leftrightarrow x=2020\)
vậy.........................................................................................................................................
Nháp trước:
\(A=\frac{3x^2-14x+17}{x^2-4x+4}\left(x\ne2\right)\Leftrightarrow\left(A-3\right)x^2-2\left(2A-7\right)x+\left(4A-17\right)=0\) (1)
Xét A = 3 thì \(2x-5=0\Leftrightarrow x=\frac{5}{2}\)
Xét A khác 3 thì (1) là pt bậc 2 với x là ẩn.(1) có nghiệm tức là:
\(\Delta'=\left(2A-7\right)^2-\left(A-3\right)\left(4A-17\right)\ge0\)
\(\Leftrightarrow4A^2-2.2.7.A+7^2-\left(4A^2-29A+51\right)\ge0\)
\(\Leftrightarrow A-2\ge0\Leftrightarrow A\ge2\)
VẬy..
\(\dfrac{4x^2-3x+17}{x^3-1}+\dfrac{2x-1}{x^2+x+1}+\dfrac{6}{1-x}\)
= \(\dfrac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(2x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
= \(\dfrac{4x^2-3x+17+2x^2-2x-x+1-6x^2+6x+6}{\left(x-1\right)\left(x^2+x+1\right)}\)
= \(\dfrac{24}{x^3-1}\)
\(\dfrac{4x^2-3x+17}{x^3-1}+\dfrac{2x-1}{x^2+x+1}+\dfrac{6}{1-x}\)
=\(\dfrac{4x^2-3x+17}{x^3-1}+\dfrac{\left(2x-1\right)\left(x-1\right)}{x^3-1}-\dfrac{6\left(x^2+x+1\right)}{x^3-1}\)
\(=\dfrac{4x^2-3x+17+2x^2-2x-x+1-6x^2-6x-6}{x^3-1}\)\(=\dfrac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-12}{x^2+x+1}\)
\(3\left(x-17\right)-2\left(x-17\right)=203\)
\(\Leftrightarrow\left(3-2\right)\left(x-17\right)=203\Leftrightarrow x-17=203\)
\(\Leftrightarrow x=220\)Vậy tập nghiệm của phương trình là S = { 220 }