Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) * Nếu 4x - 5 \(\ge\) 0 thì x \(\ge\) \(\dfrac{5}{4}\)
\(\Leftrightarrow\) \(3-2\left(4x-5\right)=\dfrac{2}{6}\)
\(\Leftrightarrow\) \(-8x=-3-10+\dfrac{2}{6}\)
\(\Leftrightarrow\) x = \(\dfrac{19}{12}\) (t/m)
* Nếu 4x - 5 < 0 thì x < \(\dfrac{5}{4}\)
\(\Leftrightarrow\) \(3-2\left(-4x+5\right)=\dfrac{2}{6}\)
\(\Leftrightarrow\) \(3+8x-10=\dfrac{2}{6}\)
\(\Leftrightarrow\) x = \(\dfrac{11}{12}\) (t/m)
b) Không hiểu đề :v
c) \(\left(7-3x\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7-3x=0\\2x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
d) \(2x\left(5-3x\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}2x>0\\5-3x>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow0< x< \dfrac{5}{3}\)
e) \(\left(4-2x\right)\left(5x+3\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4-2x< 0\\5x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}4-2x>0\\5x+3< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x< -\dfrac{3}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x>-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)
Loại TH1, nhận TH2
Vậy \(-\dfrac{3}{5}< x< 2\)
g) \(\left|3x+1\right|+\left|1-3x\right|=0\) (1)
* Nếu x < \(\dfrac{-1}{3}\)
PT (1) \(\Leftrightarrow-3x-1-1+3x=0\)
0x - 2 = 0
0x = 2 \(\Rightarrow\) PT vô nghiệm
* Nếu \(\dfrac{-1}{3}\le x\le\dfrac{1}{3}\)
PT (1) \(\Leftrightarrow3x+1-1+3x=0\)
6x = 0
x = 0 (t/m)
* Nếu x > \(\dfrac{1}{3}\)
PT (1) \(\Leftrightarrow3x+1+1-3x=0\)
0x + 2 = 0
0x = -2
PT vô nghiệm.
Vậy x = 0
a, \(3-2\left|4x-5\right|=\dfrac{2}{6}\)
\(\Rightarrow2\left|4x-5\right|=\dfrac{8}{3}\)
\(\Rightarrow\left|4x-5\right|=\dfrac{4}{3}\)
+) Xét \(x\ge\dfrac{5}{4}\) có:
\(4x-5=\dfrac{4}{3}\Rightarrow4x=\dfrac{19}{3}\Rightarrow x=\dfrac{19}{12}\) ( t/m )
+) Xét \(x< \dfrac{5}{4}\) có:
\(4x-5=\dfrac{-4}{3}\Rightarrow4x=\dfrac{11}{3}\Rightarrow x=\dfrac{11}{12}\) ( t/m )
Vậy...
b, tương tự
c, \(\left(7-3x\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7-3x=0\\2x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy...
d, \(2x\left(5-3x\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}2x>0\\5-3x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}2x< 0\\5-3x< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{3}{5}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x>\dfrac{3}{5}\end{matrix}\right.\) (loại )
Vậy \(0< x< \dfrac{3}{5}\)
e, tương tự
g, \(\left|3x+1\right|+\left|1-3x\right|=0\)
\(\Rightarrow\left|3x+1\right|+\left|3x-1\right|=0\)
+) Xét \(x\ge\dfrac{1}{3}\) có:
\(3x+1+3x-1=0\)
\(\Rightarrow6x=0\)
\(\Rightarrow x=0\) ( ko t/m )
+) Xét \(\dfrac{-1}{3}\le x< \dfrac{1}{3}\) có:
\(3x+1+1-3x=0\)
\(\Rightarrow2=0\) ( vô lí )
+) Xét \(x< \dfrac{-1}{3}\) có:
\(-3x-1+1-3x=0\)
\(\Rightarrow-6x=0\Rightarrow x=0\) ( ko t/m )
Vậy ko có giá trị x thỏa mãn đề bài
\(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
=> \(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
=> \(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)+\left(-\frac{1}{3}x-x\right)=5\)
=> \(\frac{2}{3}-\frac{4}{3}x=5\)
=> \(\frac{4}{3}x=\frac{2}{3}-5=-\frac{13}{3}\)
=> \(x=-\frac{13}{4}\)
\(\text{a) }3-2\left|4x-5\right|=\dfrac{2}{6}\\ \Leftrightarrow2\left|4x-5\right|=\dfrac{8}{3}\\ \Leftrightarrow\left|4x-5\right|=\dfrac{4}{3}\\ \Leftrightarrow4x-5=-\dfrac{4}{3}\text{ hoặc :}\\ 4x-5=-\dfrac{4}{3}\\ \Leftrightarrow\left[{}\begin{matrix}4x-5=-\dfrac{4}{3}\\4x-5=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{11}{3}\\4x=\dfrac{19}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=\dfrac{19}{12}\end{matrix}\right.\\ \text{Vậy }x=\dfrac{11}{12}\text{ hoặc }x=\dfrac{19}{12}\)
a)72x+72x.49=2450
72x.50=2450
72x=2450:50=49
72x=72
2x=2
x=1
b)(33:11)x=81
3x=81
3x=34
x=4
c)1/6=2/3:8x
8x=2/3:1/6
8x=4
x=1/2
d)(x+1)3=64
(x+1)3=43
x+1=4
x=3
minh chỉ lam đc vậy thôi nha !hi hi
Bài 1:
Ta có: \(2x+\left|x-3\right|=4\)
\(\Leftrightarrow\left|x-3\right|=4-2x\)
Điều kiện: \(4-2x\ge0\Leftrightarrow2x\le4\Rightarrow x\le2\)
\(PT\Leftrightarrow\orbr{\begin{cases}x-3=4x-2\\x-3=2-4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Vậy x = 1
Bài 2:
a) Ta có: \(A=\left|3x+5\right|+4\ge4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3x+5\right|=0\Rightarrow x=-\frac{5}{3}\)
Vậy Min(A) = 4 khi x = -5/3
b) Ta có: \(B=-\left|2x+1\right|+10\le10\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|2x+1\right|=0\Rightarrow x=-\frac{1}{2}\)
Vậy Max(B) = 10 khi x = -1/2
|3x-1|≤5
x∈[-4/3, 2]
|2x-8/7|>3
x = .........
ko biết