Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy a1b1 = 3.3 = 9.1 = c1d1 và a2b2 = 2.(-5) =(-1).10 =c2d2
P(x) = (9x2 – 9x – 10)(9x2 + 9x – 10) + 24x2
Đặt y = (3x +2)(3x – 5) = 9x2 – 9x – 10 thì P(x) trở thành:
Q(y) = y(y + 10x) = 24x2
Tìm m.n = 24x2 và m + n = 10x ta chọn được m = 6x , n = 4x
Ta được: Q(y) = y2 + 10xy + 24x2
= (y + 6x)(y + 4x)
Do đó: P(x) = ( 9x2 – 3x – 10)(9x2 – 5x – 10).
a) (x-14):2=24-3
(x-14):2 = 13
x-14 = 13.2
x-14 = 26
x = 26 + 14
x = 40
b) x572 = x <=> x = 1 hoặc 0
a, b làm như trên nha, còn mấy bìa còn lại :
M=1+2+22+...+211
M = \(\left(1+2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}+2^{11}\right)\)
M = (1+2+4+8+16+32) + 26( 1 + 2 + 22+23+24+25)
M = 63 + 26.63
M = 63 ( 1+ 26)
M= 9.7 (1 + 2^6) chia hết cho 9 => M chia hết cho 9
S=3 + 32 +33 +.....+ 39
S = \(\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)
S = \(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)
S= 3. 13 + 3^4.13 + 3^7.13
S= 13 ( 3 +3^4+3^4) chia hết cho 13 => S chia hết cho 13
M= 2+ 22 + 23+....+210
M= \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
M = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(M=2.3+2^3.3+...+2^9.3\)
M = 3( 2+ 2^3 +...+ 2^9) chia heets cho 3
=> M chia hết cho 3
A= 7+ 72 + 73 +.....+78
A= \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
A= \(7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\)
A= 7. 400 + 7^5 . 400
A = 400( 7+7^5)
A = 5 . 80 ( 7+7^5) chia hết cho 5 => A chia hết cho 5
+)A=2^1+2^2+2^3+2^4+...+2^2010
=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)
=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)
=>A=6+2^2.6+2^4.6+...+2^2008.6
=>A=6.(1+2^2+2^4+...+2^2008)
=>A=3.2.(1+2^2+2^4+...+2^2008)
=>A chia hết cho 3
A=2+2^2+2^3+2^4+...+2^2010
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)
A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^2008.7
A=7.(2+2^4+2^7+...+2^2008)
=> A chia hết cho 7
các phần khác làm tương tự
A = 21 + 22 + 23 + 24 + .... + 22009 + 22010
=> A = ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 22009 + 22010 )
=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )
=> A = 21.3 + 23.3 + .... + 22009.3
=> A = 3.( 21 + 23 + .... + 22009 )
Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )
A = 21 + 22 + 23 + 24 + 25 + 26 + .... + 22007 + 22008 + 22009
=> A = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22007 + 22008 + 22009 )
=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )
=> A = 21.7 + 24.7 + .... + 22007.7
=> A = 7.( 21 + 24 + .... + 22007 )
Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )
Các ý sau tương tự .
A=(2^1+2^2+2^3+2^4+2^5+2^6)+................+(2^2005+2^2006+2^2007+2^2008+2^2009+2^2010)
A=2^1(1+2+2^2+2^3+2^4+2^5)+...................+2^2005(1+2+2^2+2^3+2^4+2^5)
A=2.63+......................+2^2005.63
A=63.(2+..............................+2^2005)
VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.
TICK CHO MÌNH NHA
D=(7+7^2)+(7^3+7^4)+...+(7^2009+7^2010)
D=7.(1+7)+7^3.(1+7)+...+7^2009.(1+7)
D=8.(7+7^3+...+7^2009)
=> D chia hết cho 8
D=(7+7^2+7^3)+(7^4+7^5+7^6)+...+(7^2008+7^2009+7^2010)
D=7.(1+7+49)+7^4.(1+7+49)+...+7^2008.(1+7+49)
D=57.(7+7^4+...+7^2008)
=> D chia hết cho 57
chúc bạn học tốt nha
nhớ ủng hộ mk với nha
a) A=2^1+2^2+2^3+...+2^2010
A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
A=2.(1+2)+2^3 . (1+2)+...+2^2009.(1+2)
A=3.(2+2^3+2^5+...+2^2009)
=> A chia hết cho 3
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^2008+2^2009+2010)
A=2.(1+2+4)+2^4.(1+2+4)+...+2^2008.(1+2+4)
A=7.(2+2^4+...+2^2008)
=> A chia hết cho 7
bạn ghi câu hỏi tách nhau ra thành 4 câu khác nhau đi mk trả lời cho ko thì dài lắm
\(3^{x-1}.7+3^{x-1}.2=9\\ 3^{x-1}.\left(7+2\right)=9\\ 3^{x-1}.9=9\\ 3^{x-1}=\dfrac{9}{9}=1\\ Mà:3^0=1\\ Nên:x-1=0\\ Vậy:x=0+1=1\\ ---\\ P=2+2^2+2^3+...+2^{65}+2^{66}=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{64}+2^{65}+2^{66}\right)\\ =2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{64}\left(1+2+2^2\right)\\ =2.7+2^4.7+...+2^{64}.7\\ =\left(2+2^4+....+2^{64}\right).7⋮7\left(đpcm\right)\)
+)
\(3^{x-1}.7+3^{x-1}.2=9\)
\(3^{x-1}.\left(7+2\right)=9\)
\(3^{x-1}.9=9\)
\(3^{x-1}=9:9\)
\(3^{x-1}=1\)
⇔\(3^{x-1}=3^0\)
⇒\(x-1=0\)
\(x=0+1\)
\(x=1\)
Vậy \(x=1\)
+)
\(2+2^2+2^3+...+2^{65}+2^{66}\)
Vì \(2+2^2+2^3=14\) mà \(14\)⋮\(7\)
⇒Ta nhóm 3 số với nhau
Ta có:
\(\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{64}+2^{65}+2^{66}\right)\)
\(\left(2+2^2+2^3\right)+2^3.\left(2+2^2+2^3\right)+...+2^{63}.\left(2+2^2+2^3\right)\)
\(14.1+14.2^3+...+14.2^{63}\)
\(14.\left(1+2^3+...+2^{63}\right)\)
Do \(14\)⋮\(7\) nên \(P=14.\left(2+2^3+...+2^{63}\right)\)⋮\(7\)
Xin tick