
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


6A: Thay x=0 vào y=3x-6, ta được:
\(y=3\cdot0-6=0-6=-6\)
=>A(0;-6) thuộc đồ thị hàm số y=3x-6
Thay x=-1 vào y=3x-6, ta được:
\(y=3\cdot\left(-1\right)-6=-3-6=-9\) <>-3
=>B(-1;-3) không thuộc đồ thị hàm số y=3x-6
Thay x=-2 vào y=3x-6, ta được:
\(y=3\cdot\left(-2\right)-6=-6-6=-12\) <>0
=>C(-2;0) không thuộc đồ thị hàm số y=3x-6
Thay x=1 vào y=3x-6, ta được:
\(y=3\cdot1-6=3-6=-3\)
=>D(1;-3) thuộc đồ thị hàm số y=3x-6
6B:
Thay x=2 vào y=-2x+8, ta được:
\(y=-2\cdot2+8=-4+8=4\)
=>M(2;4) thuộc đồ thị hàm số y=-2x+8
Thay x=4 vào y=-2x+8, ta được:
\(y=-2\cdot4+8=-8+8=0\)
=>N(4;0) thuộc đồ thị hàm số y=-2x+8
Thay x=-2 vào y=-2x+8, ta được:
\(y=\left(-2\right)\cdot\left(-2\right)+8=4+8=12\) <>4
=>P(-2;4) không thuộc đồ thị hàm số y=-2x+8
Thay x=8 vào y=-2x+8, ta được:
\(y=-2\cdot8+8=-16+8=-8\) <>0
=>Q(8;0) không thuộc đồ thị hàm số y=-2x+8
1A:
a: y=4x+1 nên hệ số góc là a=4
b: y=3-1,5x nên hệ số góc là a=-1,5
c: \(y=\frac34\left(x+4\right)=\frac34x+3\)
=>Hệ số góc là \(a=\frac34\)
d: \(y=\frac{-2x+3}{2}=-x+\frac32\)
=>Hệ số góc là -1
1B:
a: y=-5x+7
=>Hệ số góc là a=-5
b: y=1-x=-x+1
=>Hệ số góc là a=-1
c: y=0,3(x-10)=0,3x-3
=>Hệ số góc là a=0,3
d: \(y=\frac{6x+1}{3}=2x+\frac13\)
=>Hệ số góc là a=2
5A:
a: y=x+3
Bảng giá trị:
x | 0 | 1 |
y=x+3 | 3 | 4 |
Vẽ đồ thị:
b: y=2x-5
Bảng giá trị
x | 0 | 1 |
y=2x-5 | -5 | -3 |
Vẽ đồ thị
c: y=-1,5x
Bảng giá trị:
x | 0 | 2 |
y=-1,5x | 0 | -3 |
Vẽ đồ thị:
5B:
a: y=x-2
Bảng giá trị:
x | 0 | 1 |
y=x-2 | -2 | -1 |
Bảng giá trị:
b: y=-2x+4
x | 0 | 1 |
y=-2x+4 | 4 | 2 |
Vẽ đồ thị
c: \(y=\frac23x\)
Bảng giá trị:
x | 0 | 3 |
y=\(\frac23\) x | 0 | 2 |
Vẽ đồ thị:

a:Đặt (d1): y=2x-3
Tọa độ giao điểm của (d1) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=0\end{matrix}\right.\)
Tọa độ giao điểm của (d1) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\cdot0-3=0-3=-3\end{matrix}\right.\)
b: Đặt (d2): \(y=-\dfrac{3}{4}x\)
Tọa độ giao điểm của (d2) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\-\dfrac{3}{4}x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Tọa độ giao điểm của (d2) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=-\dfrac{3}{4}x=-\dfrac{3}{4}\cdot0=0\end{matrix}\right.\)
c: Đặt \(\left(d3\right):y=2x^2\)
Tọa độ giao điểm của (d3) với trục Ox là:
\(\left\{{}\begin{matrix}2x^2=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y=2x^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\y=2\cdot0^2=0\end{matrix}\right.\)
Tọa độ giao điểm của (d3) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\cdot0^2=0\end{matrix}\right.\)
d: Đặt (d4): \(y=\dfrac{x+1}{x-2}\)
ĐKXĐ: x<>2
Tọa độ giao điểm của (d4) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\y=\dfrac{x+1}{x-2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
Tọa độ giao điểm của (d4) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=\dfrac{x+1}{x-2}=\dfrac{0+1}{0-2}=\dfrac{1}{-2}=-\dfrac{1}{2}\end{matrix}\right.\)
e: Đặt (d5): \(y=x-2+\dfrac{1}{x}\)
ĐKXĐ: x<>0
Vì hàm số không đi qua điểm có hoành độ là x=0 nên (d5) sẽ không cắt trục Oy
Tọa độ giao điểm của (d5) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\x-2+\dfrac{1}{x}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=0\\y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
f: Đặt (d6): \(y=x^2+2x-5\)
Tọa độ giao điểm của (d6) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=x^2+2x-5=0^2+2\cdot0-5=-5\end{matrix}\right.\)
Tọa độ giao điểm của (d6) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\x^2+2x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x^2+2x+1-6=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\\left(x+1\right)^2=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x+1=\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}y=0\\x+1=-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=\sqrt{6}-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=0\\x=-\sqrt{6}-1\end{matrix}\right.\end{matrix}\right.\)

Câu 5:
a: Khi m=3 thì \(f\left(x\right)=\left(2\cdot3+1\right)x-3=7x-3\)
\(f\left(-3\right)=7\cdot\left(-3\right)-3=-21-3=-24\)
\(f\left(0\right)=7\cdot0-3=-3\)
b: Thay x=2 và y=3 vào f(x)=(2m+1)x-3, ta được:
\(2\left(2m+1\right)-3=3\)
=>2(2m+1)=6
=>2m+1=3
=>2m=2
=>m=1
c: Thay m=1 vào hàm số, ta được:
\(y=\left(2\cdot1+1\right)x-3=3x-3\)
*Vẽ đồ thị
d: Để hàm số y=(2m+1)x-3 là hàm số bậc nhất thì \(2m+1\ne0\)
=>\(2m\ne-1\)
=>\(m\ne-\dfrac{1}{2}\)
e: Để đồ thị hàm số y=(2m+1)x-3 song song với đường thẳng y=5x+1 thì \(\left\{{}\begin{matrix}2m+1=5\\-3\ne1\end{matrix}\right.\)
=>2m+1=5
=>2m=4
=>m=2

*Bảng giá trị:
x | -1 | 0 | 1 |
y=2x-4 | -6 | -4 | -2 |
y=3x+3 | 0 | 3 | 6 |
y=-x | 1 | 0 | -1 |
*Vẽ đồ thị: