\(3\sqrt{3}\)x3 - 18x2 +12 \(\sqrt{3}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2022

\(=\left(x\sqrt{3}\right)^3-3\cdot\left(x\sqrt{3}\right)^2\cdot2+3\cdot x\sqrt{3}\cdot2^2-2^3\)

\(=\left(x\sqrt{3}-2\right)^3\)

18 tháng 5 2021

hẳng đẳng thức tề

(a+b)^2= a^2+2ab+b^2

(a+b)^3= a^3+3a^2b+3ab^2+b^3

a^2-b^2= (a+b)(a-b)

18 tháng 5 2021

a,\(\left(-\frac{1}{2}x+\frac{1}{4}y^2\right)^2=\left(-\frac{1}{2}x\right)^2+2\left(-\frac{1}{2}x\right).\left(\frac{1}{4}y^2\right)+\left(\frac{1}{4}y^2\right)^2\)

\(=\frac{1}{4}x^2-\frac{1}{4}xy^2+\frac{1}{16}y^4\)

b,\(\left(x+3xy\right)^3=x^3+3.x^2.3xy+3.x.\left(3xy\right)^2+\left(3xy\right)^3\)

\(=x^3+9x^3y+27x^3y^2+27x^3y^3\)

c, \(\left(-2\sqrt{2}+\sqrt{3}\right)^2-\left(\sqrt{3}+3\sqrt{2}\right)^2\)

\(=\left(-2\sqrt{2}\right)^2+2.\left(-2\sqrt{2}\right).\sqrt{3}+\sqrt{3}^2-\left[\sqrt{3}^2+2.3\sqrt{2}.\sqrt{3}+\left(3\sqrt{2}\right)^2\right]\)

\(=4.2-4.\sqrt{6}+3-3-6\sqrt{6}-9.2\)

\(=-10-10\sqrt{6}\)

9 tháng 11 2017

bạn sử dụng : \(\sqrt{x}\)= a <=>  a > hoặc bằng 0 

                                               và x= a^2

a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)

\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)

\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)

=>-33x=34

hay x=-34/33

b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)

\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)

\(\Leftrightarrow2x^2=4\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

c: \(x^2-2\sqrt{3}x+3=0\)

\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)

hay \(x=\sqrt{3}\)

d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)

\(\Leftrightarrow x-\sqrt{2}=0\)

hay \(x=\sqrt{2}\)

25 tháng 3 2018

a) ĐKXĐ: x khác 0

\(x+\dfrac{5}{x}>0\)

\(\Leftrightarrow x^2+5>0\) ( luôn đúng)

Vậy bất pt vô số nghiệm ( loại x = 0)

d)

\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)

\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2-x-3}{8}\)

\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{-5}{8}\)

\(\Leftrightarrow2x+2-4x+4>-15\)

\(\Leftrightarrow-2x>-21\)

\(\Leftrightarrow x< \dfrac{21}{2}\)

Vậy....................

25 tháng 3 2018

a)\(x+\dfrac{5}{x}>0\left(ĐKXĐ:x\ne0\right)\)

\(\Leftrightarrow\dfrac{x^2+5}{x}>0\)

\(x^2+5>0\)

\(\Rightarrow x>0\)

d)\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)

\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{2x-2}{12}>\dfrac{-5}{8}\)

\(\Leftrightarrow\dfrac{-x+3}{12}>\dfrac{-5}{8}\)

\(\Leftrightarrow-x+3>-\dfrac{15}{2}\)

\(\Leftrightarrow-x>-\dfrac{21}{2}\)

\(\Leftrightarrow x< \dfrac{21}{2}\)

25 tháng 3 2018

\(e)\) \(\left|2x-3\right|=x-1\)

Ta có : 

\(\left|2x-3\right|\ge0\)\(\left(\forall x\inℚ\right)\)

Mà \(\left|2x-3\right|=x-1\)

\(\Rightarrow\)\(x-1\ge0\)

\(\Rightarrow\)\(x\ge1\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-3=x-1\\2x-3=1-x\end{cases}\Leftrightarrow\orbr{\begin{cases}2x-x=-1+3\\2x+x=1+3\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\3x=4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=\frac{4}{3}\left(tm\right)\end{cases}}}\)

Vậy \(x=2\) hoặc \(x=\frac{4}{3}\)

Chúc bạn học tốt ~ 

25 tháng 3 2018

\(f)\) \(\left|x-5\right|-5=7\)

\(\Leftrightarrow\)\(\left|x-5\right|=12\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=12\\x-5=-12\end{cases}\Leftrightarrow\orbr{\begin{cases}x=17\\x=-7\end{cases}}}\)

Vậy \(x=17\) hoặc \(x=-7\)

Chúc bạn học tốt ~