Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) dễ lắm cậu tự làm nha , tách ra thành 2 vế rồi rút gọn lại
c) \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.9-2^n.4+3^n.1-2^n.1\)
\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n.2^{n-1}\right)\)
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)
\(=3^n.3^2+3^n-\left(2^n.2^2+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=\left(3^n-2^{n-1}\right).10\) chia hết cho 10
Bảo nè,phải sửa lại đề n\(\in\)N* vì n=0 thì \(2^{0-1}=2^{-1}=\frac{1}{2}\) nên \(\left(3^n-2^{n-1}\right).10\) không chia hết cho 10
\(N=3^{n+2}-2^{n+2}+3^n-2^n\)
\(\Rightarrow N=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(\Rightarrow N=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)
\(\Rightarrow N=\left[3^n\left(3^2+1\right)\right]-\left[2^{n-1}\left(2^3+2\right)\right]\)
\(\Rightarrow N=3^n.10-2^{n-1}.10\)
\(\Rightarrow N=\left(3^n-2^{n-1}\right).10⋮10\)
\(\Rightarrow N⋮10\left(đpcm\right)\)
Vậy \(N⋮10\)
a) \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(\Rightarrow\left(3^n\cdot3^2+3^n\right)-\left(2^n\cdot2^2+2^n\right)\)
\(\Rightarrow3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(\Rightarrow3^n\cdot10-2^n\cdot5\)
\(\Rightarrow3^n\cdot10-2^{n-1}\cdot\left(2\cdot5\right)\)
\(\Rightarrow10\left(3^n-2^n\right)\) chia hết cho 10
b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(\Rightarrow3^n\cdot3^3+3^n\cdot3+2^n\cdot2^3+2^n\cdot2^2\)
\(\Rightarrow3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
\(\Rightarrow3^n\cdot30+2^n\cdot12\)
\(\Rightarrow3^n\cdot6\cdot5+2^n\cdot2\cdot6\)
\(\Rightarrow6\left(3^n\cdot5+2^n\cdot2\right)\) chia hết cho 6
3n+2 - 2n+2 + 3n - 2n
= 3n(32 + 1) - 2n(22 + 1)
= 3n.10 - 2n.5
= 3n.10 - 2n-1.10
= 10(3n - 2n-1) chia hết cho 10
=> 3n+2 - 2n+2 + 3n - 2n chia hết cho 10 (Đpcm)
những bn nói truoc k bao gio thuc hiên, họ chỉ dụ bn gioi lam rui quen loi hua lien, tui bị lừa hoài
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\forall n\)
3n+2-2n+2+3n-2n
=(3n+2+3n)+(-2n+2-2n)
=3n.(32+1)-2n.(22+1)
=3n.10-2n.5
=3n.10-2n-1.10
=10.(3n-2n-1) chia hết cho 10
Vậy 3n+2-2n+2+3n-2n chia hết cho 10
a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)
\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)
Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10
=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10 => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10
Ta có \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10
Ta có 3n+2-2n+2+3n-2n
= 3n.9-2n.4+3n-2n
= 3n(9+1)-2n(4+1)
= 3n.10-2n.5=3n.10-2n-1.10
Nhận thấy 3n.10 chia hết cho 10 với mọi số nguyên dương n; 2n-1.10 chia hết cho 10 với mọi số nguyên dương n
=> 3n+2-2n+2+3n-2n chia hết cho 10 với mọi số nguyên dương n
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^{n-1}.2^3+3^n-2^{n-1}.2\)
\(=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)
\(=3^n.\left(9+1\right)-2^{n-1}.\left(8+2\right)\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)\)
Mà \(10.\left(3^n-2^{n-1}\right)⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\) (đpcm)
Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)