K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2016

Gọi d là ƯC ( 3n + 2 ; 5n + 3 )

=> 3n + 2 ⋮ d => 5.( 3n + 2 ) ⋮ d => 15n + 10 ⋮ d

=> 5n + 3 ⋮ d => 3.( 5n + 3 ) ⋮ d => 15n + 9 ⋮ d

=> [ ( 15n + 10 ) - ( 15n + 9 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯC ( 3n + 2 ; 5n + 3 ) = 1 nên \(\frac{3n+2}{5n+3}\) là p/s tối giản ( đpcm )

21 tháng 1 2019

Chứng minh \(\frac{5n+3}{3n+2}\)là phân số tối giản . Bạn ghi đề vậy à -_-

Ta chứng minh phân số này có tử và mẫu là hai số nguyên tố cùng nhau . Gọi d là ước chung của 5n + 3 và 3n + 2. Ta có :

                                        \(5(3n+2)-3(5n+3)=1⋮d\)

Vậy d = 1 nên 5n + 3 và 3n + 2 là hai số nguyên tố cùng nhau . Do đó : \(\frac{5n+3}{3n+2}\)là phân số tối giản

   

21 tháng 1 2019

xl bn đây mk đánh máy nên ko viết phần đk thật sự xl

26 tháng 6 2016

Dấu "=" đáng gia phải là dấu "+" bạn nhỉ.

26 tháng 6 2016

Uh mik quên mất

28 tháng 1 2016

Tìm ucln của phân số là được

28 tháng 1 2016

kho

23 tháng 3 2021

\(\text{Giải: }\)

\(\text{Gọi ƯCLN ( 3n + 2 ; 5n + 3 ) = d }\)\(\left(d\in N\text{* }\right)\)

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}15n+10\\15n+9\end{cases}\Rightarrow\left(15n+10\right)-\left(15n+9\right)}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\text{3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau}\)

\(\Rightarrow\frac{3n+2}{5n+3}\text{là phân số tối giản }\)

\(\text{Vậy ..................................}\)

có j thắc mắc thì ib cho  mk nhé

24 tháng 3 2021

Đặt ƯCLN  \(3n+2;5n+3=d\)( d \(\inℕ^∗\))

Ta có : \(3n+2⋮d\Rightarrow15n+10⋮d\)(1) 

\(5n+3⋮d\Rightarrow15n+9⋮d\)(2)

Lấy (1) - (2) ta được : \(15n+10-15n-9⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

4 tháng 3 2016

Ta có :

   3n + 2 / 5n + 3

= 3 + 2 / 5 + 3

= 5/8

5/8 là phân số tối giản nên 3n + 2 / 5n + 3

15 tháng 2 2019

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

4 tháng 7 2016

Gọi ƯCLN(3n+2;5n+3)=d

=>3n+2 chia hết cho d và 5n+3 chia hết cho d

=>(3n+2)-(5n+3) chia hết cho d

=>(15n+10)-(15n+9) chia hết cho d

=>1 chia hết cho d

=>d=1

Vì ƯCLN(3n+2;5n+3)=1 nên phân số \(\frac{3n+2}{5n+3}\) tối giản

4 tháng 7 2016

Gọi d là ƯC của 3n + 2 và 5n + 3

Khi đó 3n + 2 chia hết cho d và 5n + 3 chia hết cho d

<=>5.(3n + 2) chia hết cho d và 3.(5n + 3) chia hết cho d 

<=> 15n + 10 chia hết cho d và 15n + 9 chia hết cho d

=>(15n + 10) - (15n + 9) = 1  => 1 chia hết cho d=>d = 1

Vậy mọi phân số có dạng  \(\frac{3n+2}{5n+3}\) tối giản

a: Gọi d=UCLN(2n+1;3n+2)

\(\Leftrightarrow6n+4-6n-3⋮d\)

=>d=1

=>Phân số tối giản

b: Gọi d=UCLN(3n+2;5n+3)

\(\Leftrightarrow15n+10-15n-9⋮d\)

=>d=1

=>Phân số tối giản