\(C=\frac{1}{1+a^2+b^2}+\frac{1}{1+b^2+c^2}+\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 10 2020

Trước hết với các số dương x;y ta luôn có:

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(C=\frac{1}{1+x^3+y^3}+\frac{1}{1+y^3+z^3}+\frac{1}{1+z^3+x^3}\)

\(C\le\frac{xyz}{xyz+xy\left(x+y\right)}+\frac{xyz}{xyz+yz\left(y+z\right)}+\frac{xyz}{xyz+zx\left(z+x\right)}\)

\(C\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)

17 tháng 8 2019

Để ý: \(ab+bc+ca=\frac{\left[\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\right]}{2}\).

Do đó đặt  \(a^2+b^2+c^2=x>0;a+b+c=y>0\). Bài toán được viết lại thành:

Cho \(y^2+5x=24\), tìm max:

\(P=\frac{x}{y}+\frac{y^2-x}{2}=\frac{5x}{5y}+\frac{y^2-x}{2}\)

\(=\frac{24-y^2}{5y}+\frac{y^2-\frac{24-y^2}{5}}{2}\)

\(=\frac{24-y^2}{5y}+\frac{3\left(y^2-4\right)}{5}\)\(=\frac{3y^3-y^2-12y+24}{5y}\)

Đặt \(y=t\). Dễ thấy \(12=3\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)=3t^2-5\left(ab+bc+ca\right)\)

Và dễ dàng chứng minh \(ab+bc+ca\le3\)

Suy ra \(3t^2=12+5\left(ab+bc+ca\right)\le27\Rightarrow t\le3\). Mặt khác do a, b, c>0 do đó \(0< t\le3\).

Ta cần tìm Max P với \(P=\frac{3t^3-t^2-12t+24}{5t}\)và \(0< t\le3\)

Ta thấy khi t tăng thì P tăng. Do đó P đạt giá trị lớn nhất khi t lớn nhất.

Khi đó P = 3. Vậy...

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

12 tháng 7 2018

Ta có \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

=> \(\frac{1}{\sqrt{a^2-ab+b^2}}\le\frac{1}{\frac{1}{2}\left(a+b\right)}=\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Chứng minh tương tự, rồi cộng lại, ta có 

A\(\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

dấu = xảy ra <=> a=b=c=1

^_^

31 tháng 1 2019

Ta có : \(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a.abc}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}\)

                                                                               \(=\frac{a}{\sqrt{bc+a^2+ab+ac}}\)

                                                                                \(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng bđt Cô-si ngược ta có
\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

C/m tương tự được \(\frac{b}{\sqrt{ca\left(1+b^2\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)

                                 \(\frac{c}{\sqrt{ab\left(1+c^2\right)}}\le\frac{1}{2}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)

Cộng 3 vế của các bđt trên lại ta được

\(A\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{a}{a+c}+\frac{c}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}\right)\)

         \(=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b+c=abc\\a=b=c\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=a^3\\a=b=c\end{cases}}\)

                                                                          \(\Leftrightarrow\hept{\begin{cases}a^3-3a=0\\a=b=c\end{cases}}\)

                                                                       \(\Leftrightarrow\hept{\begin{cases}a\left(a^2-3\right)=0\\a=b=c\end{cases}}\) 

                                                                         \(\Leftrightarrow a=b=c=\sqrt{3}\left(a,b,c>0\right)\)

Vậy \(A_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\sqrt{3}\)

20 tháng 8 2020

Áp dụng Bất Đẳng Thức \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\forall x;y;z\inℝ\)ta có

\(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc>0\Rightarrow ab+bc+ca\ge3\sqrt{abc}\)

Ta có \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\forall a;b;c>0\)

Thật vậy \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)

\(\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc=\left(1+\sqrt[3]{abc}\right)^3\)

Khi đó \(P\le\frac{2}{3\left(1+\sqrt{abc}\right)}+\frac{\sqrt[3]{abc}}{1+\sqrt[3]{abc}}+\frac{\sqrt{abc}}{6}\)

Đặt \(\sqrt[6]{abc}=t\Rightarrow\sqrt[3]{abc}=t^2,\sqrt{abc}=t^3\)

Vì a,b,c>0 nên 0<abc\(\le\left(\frac{a+b+c}{3}\right)^2=1\Rightarrow0< t\le1\)

Xét hàm số \(f\left(t\right)=\frac{2}{3\left(1+t^3\right)}+\frac{t^2}{1+t^2}+\frac{1}{6}t^3;t\in(0;1]\)

\(\Rightarrow f'\left(t\right)=\frac{2t\left(t-1\right)\left(t^5-1\right)}{\left(1+t^3\right)^2\left(1+t^2\right)^2}+\frac{1}{2}t^2>0\forall t\in(0;1]\)

Do hàm số đồng biến trên (0;1] nên \(f\left(t\right)< f\left(1\right)\Rightarrow P\le1\)

\(\Rightarrow\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6}+\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\le1\)

Dấu "=" xảy ra khi a=b=c=1

20 tháng 8 2020

:3 em từ olm sang đây có gì sai thì chỉ bảo

Áp dụng bất đẳng thức \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\forall x;y;z\inℝ\)

ta có \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc>0\Rightarrow ab+bc+ca\ge3\sqrt{abc}\)Ta lại có \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\forall a;b;c>0\)

Thật vậy \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)

\(\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc=\left(1+\sqrt[3]{abc}\right)^3\)

Khi đó \(P\le\frac{2}{3\left(1+\sqrt{abc}\right)}+\frac{\sqrt[3]{abc}}{1+\sqrt[3]{abc}}+\frac{\sqrt{abc}}{6}\)

Đặt \(\sqrt[6]{abc}=t\Rightarrow\sqrt[3]{abc}=t^2,\sqrt{abc}=t^3\)

Vì a,b,c > 0 nên 0<abc \(\le\left(\frac{a+b+c}{3}\right)^2=1\Rightarrow0< t\le1\)

Xét hàm số \(f\left(t\right)=\frac{2}{3\left(1+t^3\right)}+\frac{t^2}{1+t^2}+\frac{1}{6}t^3;t\in(0;1]\)

\(\Rightarrow f'\left(t\right)=\frac{2t\left(t-1\right)\left(t^5-1\right)}{\left(1+t^3\right)^2\left(1+t^2\right)^2}+\frac{1}{2}t^2>0\forall t\in(0;1]\)

Do hàm số đồng biến trên (0;1] nên \(f\left(t\right)< f\left(1\right)\Rightarrow P\le1\)

\(\Rightarrow\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6}+\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\le1\)

Dấu ''='' xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 2 bạn xem viết có sai đề không?

NV
4 tháng 8 2020

2.

\(8ab-2=3\left(a^4+b^4\right)\ge6a^2b^2\Leftrightarrow3a^2b^2-4ab+1\le0\)

\(\Leftrightarrow\frac{1}{3}\le ab\le1\)

Khi đó:

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}-\frac{2}{ab+1}=\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\le0\)

\(\Rightarrow\frac{1}{a^2+1}+\frac{1}{b^2+1}\le\frac{2}{ab+1}\)

\(\Rightarrow P\le\frac{2}{ab+1}+\frac{ab}{3a^2b^2+1}\)

Đặt \(ab=x\Rightarrow\frac{1}{3}\le x\le1\Rightarrow P\le\frac{2}{x+1}+\frac{x}{3x^2+1}\)

\(P\le\frac{2}{x+1}+\frac{x}{3x^2+1}-\frac{7}{4}+\frac{7}{4}=\frac{-21x^3+7x^2-3x+1}{4\left(x+1\right)\left(3x^2+1\right)}+\frac{7}{4}\)

\(P\le\frac{\left(7x^2+1\right)\left(1-3x\right)}{4\left(x+1\right)\left(3x^2+1\right)}+\frac{7}{4}\le\frac{7}{4}\) ; \(\forall x\ge\frac{1}{3}\)

\(P_{max}=\frac{7}{4}\) khi \(x=\frac{1}{3}\) hay \(a=b=\frac{1}{\sqrt{3}}\)

NV
4 tháng 8 2020

1.

Ta có: \(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\)

\(\Leftrightarrow a^2-4+2bc+abc\le0\)

\(\Leftrightarrow\left(a+2\right)\left(a-2\right)+bc\left(a+2\right)\le0\)

\(\Leftrightarrow\left(a+2\right)\left(bc+a-2\right)\le0\)

\(\Leftrightarrow bc+a\le2\) (1)

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với 1

Giả sử đó là b và c \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc+1\ge b+c\Rightarrow abc+a\ge ab+ac\)

\(\Rightarrow abc\ge ab+ac-a\Rightarrow abc+2\ge ab+ac-a+2\)

Do đó ta chỉ cần chứng minh: \(ab+ac-a+2\ge ab+bc+ca\)

\(\Leftrightarrow a+bc\le2\) (đúng theo (1)) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)