![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(205^2-95^2=\)
\(=\left(205-95\right)\left(205+95\right)\)
\(=200.300\)
\(=60000\)
\(36^2-14^2=\)
\(=\left(36-14\right)\left(36+14\right)\)
\(=22.50\)
\(=1100\)
\(205^2-95^2=\left(205-95\right)\left(205+95\right)=110.300=33000\)
\(36^2-14^2=\left(36-14\right)\left(36+14\right)=22.50=1100\)
\(97^2-3^2=\left(97-3\right)\left(97+3\right)=94.100=9400\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\frac{5}{x+7}+\frac{8}{2x+14}=\frac{3}{2}\) Đkxđ : \(x\ne-7\)
⇔ \(\frac{5}{x+7}+\frac{8}{2\left(x+7\right)}=\frac{3}{2}\)
⇔ \(\frac{10}{2\left(x+7\right)}+\frac{8}{2\left(x+7\right)}=\frac{3\left(x+7\right)}{2\left(x+7\right)}\)
⇒ \(10+8=3\left(x+7\right)\)
⇔ \(10+8=3x+21\)
⇔ \(-3x=21-10-8\)
⇔ \(-3x=3\)
⇔ \(x=-1\) ( tm )
Ptr có tập nhiệm : S \(=\left\{-1\right\}\)
b, \(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) Đkxđ : \(x\ne3;x\ne0\)
⇔ \(\frac{x\left(x+3\right)}{x\left(x-3\right)}-\frac{1\left(x-3\right)}{x\left(x-3\right)}=\frac{3}{x\left(x-3\right)}\)
⇒ \(x\left(x-3\right)-1\left(x-3\right)=3\)
⇔ \(x^2-3x-x+3=3\)
⇔ \(x^2-4x=0\)
⇔ \(x\left(x-4\right)=0\)
⇔ \(\left\{{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=0\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)
Ptr có tập nhiệm : S \(=\left\{4\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b: \(\Leftrightarrow4x^2-8x+4=x^2+2x+1+3\left(x^2+x-6\right)\)
\(\Leftrightarrow3x^2-10x+3=3x^2+3x-18\)
=>-13x=-21
hay x=21/13
c: \(\Leftrightarrow\left(\dfrac{x-90}{10}-1\right)+\left(\dfrac{x-76}{12}-2\right)+\left(\dfrac{x-58}{14}-3\right)+\left(\dfrac{x-36}{16}-4\right)+\left(\dfrac{x-15}{17}-5\right)=0\)
=>x-100=0
hay x=100
![](https://rs.olm.vn/images/avt/0.png?1311)
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{36\left(x-2\right)}{32-16x}=\frac{36\left(x-2\right)}{16\left(2-x\right)}=-\frac{36\left(2-x\right)}{16\left(2-x\right)}=-\frac{36}{16}=-\frac{9}{4}\)
b) \(\frac{3x^2-12x+12}{x^4-8x}=\frac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}=\frac{3x-6}{x^3+2x^2+4x}\)
c) \(\frac{7x^2+14x+7}{3x^2+3x}=\frac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}=\frac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\frac{7\left(x+1\right)}{3x}=\frac{7x+7}{3x}\)
d) \(\frac{x^4-5x^2+4}{x^4-10x^2+9}=\frac{x^4-x^2-4x^2+4}{x^4-x^2-9x^2+9}=\frac{x^2\left(x^2-1\right)-4\left(x^2-1\right)}{x^2\left(x^2-1\right)-9\left(x^2-1\right)}=\frac{\left(x^2-4\right)\left(x^2-1\right)}{\left(x^2-9\right)\left(x^2-1\right)}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\)
e) \(\cdot\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}=\frac{\left(x^3+1\right)\left(x+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}=\frac{x^2+2x+1}{x^2+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
NÓI LUÔN LÀ RÚT GỌN C/M nghe nặng nề quá
ĐK tồn tại \(x\ne\) {-6,0,6}
\(A=\left(\frac{36+6x+x^2-6}{x\left(x-6\right)\left(x+6\right)}\right).\frac{x^2+36}{\left(x-6\right)\left(x+6\right)}\) Bẫy rồi
![](https://rs.olm.vn/images/avt/0.png?1311)
đề là gì bạn có phải như mình làm ko
\(x^2+6x+9=\left(x+3\right)^2\)
\(x^2+8x+16=\left(x+4\right)^2\)
\(x^2+10x+25=\left(x+5\right)^2\)
\(x^2-12+36=\left(x-6\right)^2\)
\(x^2-14x+49=\left(x-7\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(72\left(x-6\right)+72\left(x+6\right)=9\left(x^2-36\right)\)
\(144x=9x^2-324\)=0
\(9x^2-144x-324=0\)
\(9\left(x^2-16x-36\right)=0\)
\(9\left(x^2-18x+2x-36\right)=0\)
\(9\left(x-18\right)\left(x+2\right)=0\)
Đến đây bạn tự làm nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\frac{x-5}{2015}+\frac{x-4}{2016}=\frac{x-3}{2017}+\frac{x-2}{2018}\)
<=>\(\frac{x-2020}{2015}+\frac{x-2020}{2016}-\frac{x-2020}{2017}-\frac{x-2020}{2018}=0\)
<=> \((x-2020)(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018})=0\)
<=>\(x-2020=0\)
<=> \(x=2020\)
Vậy_
b, tương tự
\(36^2-14^2\)
\(=\left(36+14\right)\left(36-14\right)\)
\(=50\cdot22\)
\(=1100\)