
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(7^{13}:49^2=7^{13}:7^4=7^9\)
\(27^{16}:9^{10}=3^{48}:3^{20}=3^{28}\)
\(5^{20}\cdot9^{10}=5^{20}\cdot3^{20}=15^{20}\)
\(7^7\cdot13+7^7\cdot36=7^7\cdot\left(13+36\right)=7^7\cdot49=7^7\cdot7^2=7^9\)
\(5^{12}\cdot37-5^{12}\cdot12=5^{12}\cdot\left(37-12\right)=5^{12}\cdot25=5^{12}\cdot5^2=5^{14}\)

a)Ta có:\(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125^{12}>121^{12}\)\(\Rightarrow5^{36}>11^{24}\)


Đề bài:So sánh
a)\(5^{36}và11^{24}\)
\(5^{36}=\left(5^3\right)^{12}\)
\(11^{24}=\left(11^2\right)^{12}\)
\(\Leftrightarrow125^{12}và121^{12}\)
\(\Rightarrow125^{12}>121^{12}\)
\(\Rightarrow5^{36}>11^{24}\)
\(5^{36}=\left(5^3\right)^{12}\)
\(11^{24}=\left(11^2\right)^{12}\)
\(125^{12}>121^{12}\)

27 mũ 11 và 81 mũ 8
625 mũ 5 và 125 mũ 7
5 mũ 36 và 11 mũ 24
5 mũ 23 và 6,5 mũ 22
7.2 mũ 13 và 2 mũ 16

- 22.32.5:22.3-32=3.5-32=15-9=6
- 2.52-22.32:32=2.(52-2)=2.(25-2)=46
3. 33.19-33.12=33.(19-12)=33.7=189
4. 3.52-16:22=3.52-24:22=3.25-4=75-4=71

Lời giải:
$A=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{88}+3^{89}+3^{90})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{88}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{88})=13(3+3^4+...+3^{88})\vdots 13$
--------------------
$A=(3+3^2+3^3+3^4+3^5)+(3^6+3^7+3^8+3^9+3^{10})+...+(3^{86}+3^{87}+3^{88}+3^{89}+3^{90})$
$=3(1+3+3^2+3^3+3^4)+3^6(1+3+3^2+3^3+3^4)+...+3^{86}(1+3+3^2+3^3+3^4)$
$=(1+3+3^2+3^3+3^4)(3+3^6+...+3^{86})$
$=121(3+3^6+...+3^{86})=11.11.(3+3^6+...+3^{86})\vdots 11$
a: =36-90=-54
b: =-13(74+1)+13*25
=-13*75+13*25
=-13*50=-650
\(36+\left(-90\right)=-54\)
\(-13.74+13.\left(5^2\right)+\left(-13\right)\)
\(=-962+13.25+\left(-13\right)\)
\(=-962+325+\left(-13\right)\)
\(=-650\)