Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) 125:5^3
=125:125
=1
mik chỉ làm đc câu c thôi nha
a)
= 5.23 - 3.42 + 9
= 5.8 - 3 . 16 + 9
= 40 - 48 + 9
= 1
b)
= 59049 : 729 - 9 . 3
= 81 - 27
= 54
(32.5.79).(35.53):(33.52.75)2
=(3².5.79).(35.5³):(36.5⁴.710)
=(32.35:36).(5.53:54).(79.710)
=32+5-6. 51+3-4. 79+10
=31. 5 . 719
G=\(\frac{3}{2.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{2015.2017}\)
G=\(3.\left(\frac{1}{2.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2015.2017}\right)\)
G=\(3.\left(\frac{1}{2}.\frac{1}{5}+\frac{1}{5}.\frac{1}{7}+\frac{1}{7}.\frac{1}{9}+...+\frac{1}{2013}.\frac{1}{2015}+\frac{1}{2015}.\frac{1}{2017}\right)\)
G=\(3.\left(\frac{1}{2}+\frac{1}{2017}\right)\)
G=1.5
Anh ko bik có đúng ko nữa lâu quá rồi. Em thông cảm nhé
a) \(2^2\cdot5^2-64:2^3\)
\(=4\cdot25-2^6:2^3\)
\(=100-2^3=100-8\)
\(=92\)
b) \(3^5\cdot9:243\)
\(=3^5\cdot9:3^5=9\)
c) \(4\cdot2^5\cdot2^3\cdot\dfrac{1}{16}\)
\(=2^{10}\cdot\dfrac{1}{2^4}=2^6\)
\(=64\)
d) \(\dfrac{11\cdot3^{22}\cdot3^7-9^{15}}{3^{28}}\)
\(=\dfrac{11\cdot3^{29}-\left(3^2\right)^{15}}{3^{28}}\)
\(=\dfrac{11\cdot3^{29}-3^{30}}{3^{28}}=\dfrac{3^{29}\left(11-3\right)}{3^{28}}\)
\(=\dfrac{3^{29}\cdot8}{3^{28}}=3\cdot8=24\)
a) 5 . 2^2x - 29.2^3 = 11.2^3
5 . 2^2x - 29 . 8 = 11 . 8
5 . 2^2x - 232 = 88
5 . 2^2x = 88 + 232
5 . 2^2x = 320
2^2x = 320 : 5
2 ^ 2 x = 64
2 ^ 2 x = 2 ^ 6 ( cùng cơ số )
\(\Rightarrow\) x = 6 : 2
x = 3
b)5.x^12 - 40x ^ 9 = 0
5 . x^12 = 40 . x^9
5 . x^12 = 8 . 5 . x^9
5 . x^12 = 5 . (x^9 . 8)
x^12 = x^9 .8
x^12 = x^9 . x^3= x^9 . 8
x^3 = 8
X^3 = 2^3 ( cùng cơ số )
\(\Rightarrow\)x = 2
\(\dfrac{3}{5}\).\(\dfrac{7}{9}\) + \(\dfrac{3}{5}\).\(\dfrac{2}{9}\) + \(\dfrac{3}{5}\)
= \(\dfrac{3}{5}\).(\(\dfrac{7}{9}\)+ \(\dfrac{2}{9}\)+1)
= \(\dfrac{3}{5}\).(1+1)
= \(\dfrac{6}{5}\)
\(\dfrac{3}{5}\times\dfrac{7}{9}+\dfrac{3}{5}\times\dfrac{2}{9}+\dfrac{3}{5}=\dfrac{3}{5}\left(\dfrac{7}{9}+\dfrac{2}{9}+1\right)=\dfrac{3}{5}\times\left(\dfrac{9}{9}+1\right)=\dfrac{3}{5}\times\left(1+1\right)=\dfrac{3}{5}\times2=\dfrac{6}{5}\)