K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

\(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{624}{625}\)

\(=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{24.26}{25.25}\)

\(=\frac{1.2.3....24}{2.3.4....25}\cdot\frac{3.4.5....26}{2.3.4....25}\)

\(=\frac{1}{25}\cdot\frac{26}{2}=\frac{26}{50}=\frac{13}{25}\)

\(\left(1+\frac{1}{3}\right)\cdot\left(1+\frac{1}{8}\right)\cdot\left(1+\frac{1}{15}\right)\cdot\cdot\cdot\cdot\left(1+\frac{1}{9999}\right)\)

\(=\frac{4}{3}\cdot\frac{9}{8}\cdot\frac{16}{15}\cdot\cdot\cdot\cdot\frac{10000}{9999}\)

\(=\frac{2.2}{1.3}\cdot\frac{3.3}{2.4}\cdot\frac{4.4}{3.5}\cdot\cdot\cdot\cdot\frac{100.100}{99.101}\)

\(=\frac{2.3.4...100}{1.2.3...99}\cdot\frac{2.3.4...100}{3.4.5...101}\)

\(=\frac{100}{1}\cdot\frac{2}{101}=\frac{200}{101}\)

14 tháng 3 2017

\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{9999}{10000}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)

\(=\frac{1.2.3....99}{2.3.4....100}.\frac{3.4.5....101}{2.3.4...100}\)

\(=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)

\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).....\left(1-\frac{1}{10000}\right)\)

\(=\frac{3}{4}.\frac{8}{9}....\frac{9999}{10000}=\frac{101}{200}\)

2 tháng 7 2015

A = \(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{9999}{10000}=\frac{1\cdot3}{2.2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3.5}{4.4}\cdot\cdot\cdot\cdot\frac{99\cdot101}{100\cdot100}=\frac{1}{2}\cdot\frac{101}{100}=\frac{101}{200}\)

B = ( 1- 1/4 )( 1-1/9) ...( 1-1/10000 ) = 3/4 . 8/9 .....9999/100000 ( tương tự A )

 

19 tháng 4 2016

a=5051/100 co ma

27 tháng 3 2017

3/4.8/9.15/16.....624/625

=(1.3)/(2.2).(2.4)/(3.3).(3.5)/(4.4)...(24.26)/(25.25)

=(1.2.3....24).(3.4.5....26)/(2.3.4...25).(2.3.4...25)

=26/25.2

=26/50

=13/25

31 tháng 3 2019

Đặt\(A=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)

\(\frac{1}{101}>\frac{1}{102}>\frac{1}{103}>...>\frac{1}{300}\)

\(\Rightarrow\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+...+\frac{1}{300}\right)\)\(>\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)+\left(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\right)\)(mỗi cái trong ngoặc là một trăm phân số)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>\left(\frac{1}{200}\right).100+\left(\frac{1}{300}\right).100\)

\(\Rightarrow A>\frac{1}{2}+\frac{1}{3}\)

\(\Rightarrow A>\frac{5}{6}\)

Mà 5/6>2/3=>A>2/3

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{300}\)

Đặt A = \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{300}\)

Vì \(\frac{1}{101}>\frac{1}{102}>\frac{1}{103}>...>\frac{1}{300}\)

\(\Rightarrow\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....\frac{1}{200}\right)+\left(\frac{1}{201}+\frac{1}{202}+\frac{1}{103}+.....\frac{1}{300}\right)>\left(\frac{1}{200}+\frac{1}{200}+\frac{1}{200}\right)\)

Tự làm tiếp nhé !!!

 
20 tháng 12 2015

gọi số phải tìm là A   A
=(1.3).(2.4).(3.5)...(99.101)/
(2².3².4²...100²)

=(1.2.3...99).(3.4.5...101)/
[(1.2.3.4...100)(2.3.4...100)]

=101/(100.2)=101/200