K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

no no no

2 tháng 9 2016

ai trả lời được ko

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)

14 tháng 1 2016

\(P=\left(\frac{2\left(\sqrt{x}+2\right)+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right).\frac{x+2\sqrt{x}}{2\sqrt{x}}\) điều kiện x >0

\(P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}.\frac{x+2\sqrt{x}}{2\sqrt{x}}\)

\(P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}=1+\frac{4+x}{2\sqrt{x}}.\)

b) P = 3

\(\Leftrightarrow1+\frac{4+x}{2\sqrt{x}}=3\Leftrightarrow\frac{4+x}{2\sqrt{x}}=2\)

\(\Leftrightarrow4+x=4\sqrt{x}\Leftrightarrow4+x-4\sqrt{x}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

14 tháng 1 2016

Ngô Văn Tuyên cảm ơn bạn nha. Nhưng cho mình hỏi tí sao bạn lại tách ra thành \(1+\frac{4-x}{2\sqrt{x}}\)

giải thích hộ mình với nhé. Cảm ơn nhiều !!

...
Đọc tiếp

333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333+3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333+33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333+33333333333333333333333333333+333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333+33333333333333333333333333333333333333333333333333333333333+7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

9
15 tháng 3 2017

=100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

15 tháng 3 2017

khổ thân cái máy tính

6 tháng 7 2021

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne3\\x\ge1\end{matrix}\right.\)

Ta có : \(P=\dfrac{x-1-2}{\sqrt{x-1}-\sqrt{2}}=\dfrac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}\)

\(=\sqrt{x-1}+\sqrt{2}\)

b, Thấy : \(\sqrt{x-1}\ge0\)

\(\Rightarrow P=\sqrt{x-1}+\sqrt{2}\ge\sqrt{2}\)

Vậy \(Min=\sqrt{2}\Leftrightarrow x=1\)

Vậy ,...
 

9 tháng 7 2017

\(A=\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{\sqrt{a}+1}{a}\)

\(A=\left(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right).\frac{a}{\sqrt{a}+1}\)

\(A=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right).\frac{a}{\sqrt{a}+1}\)

\(A=\frac{a-1}{\sqrt{a}}.\frac{a}{\sqrt{a}+1}\)

\(A=\left(\sqrt{a}-1\right).\sqrt{a}\)

\(A=a-\sqrt{a}\)

9 tháng 7 2017

A=\(\left(\frac{\sqrt{a}\left(\sqrt{a}\right)-1}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right):\frac{\sqrt{a}+1}{a}\)\(\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\):\(\frac{\sqrt{a}+1}{a}\)=

=\(\left(\frac{a-1}{\sqrt{a}}\right)\)\(\frac{a}{\sqrt{a}+1}\)\(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\)\(\frac{a}{\sqrt{a}+1}\)\(\frac{\sqrt{a}-1}{\sqrt{a}}\)

1 tháng 6 2021

a, \(A=\sqrt{x-6\sqrt{x}+9}-\sqrt{4x+4\sqrt{x}+1}\)

\(=\sqrt{\left(\sqrt{x}-3\right)^2}-\sqrt{\left(2\sqrt{x}+1\right)^2}\)

\(=\left|\sqrt{x}-3\right|-\left|2\sqrt{x}+1\right|=\left|\sqrt{x}-3\right|-2\sqrt{x}-1\)

b, \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

\(B^2=x+2\sqrt{x-1}+x-2\sqrt{x-1}-2\sqrt{x^2-4\left(x-1\right)}\)

\(=2x-2\sqrt{\left(x+2\right)^2}=2x-2\left|x+2\right|\)

\(\Rightarrow B=\sqrt{2x-2\left|x+2\right|}\)

1 tháng 6 2021

a, Với \(-4\le x\le4\)

 \(A=\sqrt{x^2+8x+16}+\sqrt{x^2-8x+16}\)

\(=\sqrt{\left(x+4\right)^2}+\sqrt{\left(x-4\right)^2}=\left|x+4\right|+\left|x-4\right|\)

b, \(B=\sqrt{9x^2-6x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(3x\right)^2-2.3x+1}+\sqrt{\left(2x\right)^2-2.2x.3x+3^2}\)

\(=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(2x-3\right)^2}=\left|3x-1\right|+\left|2x-3\right|\)