Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3^{x+3}\cdot3^{2x-1}+3^{2x}\cdot3^{x+1}=324\)
\(\Leftrightarrow3^{3x+2}+3^{3x+1}=324\)
\(\Leftrightarrow3^{3x+1}\cdot\left(3+1\right)=324\)
\(\Leftrightarrow3^{3x+1}\cdot4=324\)
\(\Leftrightarrow3^{3x+1}=81\)
\(\Leftrightarrow3^{3x+1}=3^4\)
\(\Rightarrow3x+1=4\)
\(\Rightarrow x=1\)
32x+1+32x=324
=> 32x.(31+1)=324
=> 32x.4=324
=> 32x=81
=> 32x=34
=> 2x=4
=> x=2
Ta có: \(3^{x+3}\cdot3^{2x-1}+3^{2x}\cdot3^{x+1}=324\)
\(\Leftrightarrow3^{3x+2}+3^{3x+1}=324\)
\(\Leftrightarrow3^{3x+1}\cdot\left(3+1\right)=324\)
\(\Leftrightarrow3^{3x+1}\cdot4=324\)
\(\Leftrightarrow3^{3x+1}=81=3^4\)
\(\Rightarrow3x+1=4\)
\(\Leftrightarrow x=1\)
\(3^{x+3}\cdot3^{2x-1}+3^{2x}\cdot3^{x+1}=324\)
\(3^{x+3+2x-1}+3^{2x+x+1}=324\)
\(3^{3x+2}+3^{3x+1}=324\)
\(3^{3x+1}\cdot\left(3+1\right)=324\)
\(3^{3x+1}\cdot4=324\)
\(3^{3x+1}=324:4\)
\(3^{3x+1}=81\)
\(3^{3x+1}=3^4\)
\(\Rightarrow3x+1=4\)
\(3x=4-1\)
\(3x=3\)
\(x=3:3\)
\(x=1\)
\(3^x+3^{x+1}=324\Leftrightarrow3^x\cdot4=324\Leftrightarrow3^x=81\Leftrightarrow x=4\)
3x + 3x+1 = 324
3x.(1 + 3) = 324
3x.4 = 324
3x = 81
=> x = 4
\(3^{x+1}+3^{x+2}=324\)
\(\Leftrightarrow\)\(3^x.3+3^x.3^2=324\)
\(\Leftrightarrow\)\(3^x\left(3+3^2\right)=324\)
\(\Leftrightarrow\)\(3^x\left(3+9\right)=324\)
\(\Leftrightarrow\)\(3^x.12=324\)
\(\Leftrightarrow\)\(3^x=\frac{324}{12}\)
\(\Leftrightarrow\)\(3^x=27\)
\(\Leftrightarrow\)\(3^x=3^3\)
\(\Leftrightarrow\)\(x=3\)
Vậy \(x=3\)
Chúc bạn học tốt ~
\(3^{x+1}+3^{x+2}=324\)
\(3^x.3+3^x.3^2=324\)
\(3^x.3+3^x.9=324\)
\(3^x.\left(3+9\right)=324\)
\(3^x.12=324\)
\(3^x=324:12\)
\(3^x=27\)
\(3^x=3^3\)
\(\Rightarrow x=3\)
\(3^{2x+1}+9^x=324\)
\(3^{2x}.3+3^{2x}=324\)
\(3^{2x}.\left(3+1\right)=324\)
\(3^{2x}.4=324\)
\(3^{2x}=81\)
\(3^{2x}=3^4\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
vậy \(x=2\)
32x+1 + 9x = 324
9x lớn nhất là 81 trong phép cộng trên
9x = 92 = 81
x = 2