K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S=(2+98)*(4+6)+...+100+100+102

100*10+....+100+100*102
=224400

\(=\dfrac{-7}{2022}\left(\dfrac{503}{3}+\dfrac{508}{3}\right)+\dfrac{7}{3}=\dfrac{-7}{2022}\cdot\dfrac{1011}{3}+\dfrac{7}{3}\)

\(=\dfrac{-7}{6}+\dfrac{7}{3}=\dfrac{-7}{6}+\dfrac{14}{6}=\dfrac{7}{6}\)

11 tháng 4 2019

\(\frac{3}{2\cdot4}+\frac{3}{4\cdot6}+\frac{3}{6\cdot8}+...+\frac{3}{96\cdot98}\)

\(=\frac{3}{2}\cdot\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{96\cdot98}\right)\)

\(=\frac{3}{2}\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{96}-\frac{1}{98}\right)\)

\(=\frac{3}{2}\cdot\left(\frac{1}{2}-\frac{1}{98}\right)=\frac{3}{2}\cdot\left(\frac{48}{98}-\frac{1}{98}\right)\)

\(=\frac{3}{2}\cdot\frac{47}{98}=\frac{141}{196}\)

13 tháng 5 2018

Ta có :

\(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{97.99}+\frac{1}{98.100}\)

\(A=\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{4}-\frac{1}{6}\right)+...+\frac{1}{2}.\left(\frac{1}{97}-\frac{1}{99}\right)+\frac{1}{2}.\left(\frac{1}{98}-\frac{1}{100}\right)\)

\(A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{98}-\frac{1}{100}\right)\)

\(A=\frac{1}{2}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{97}+\frac{1}{98}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-...-\frac{1}{99}-\frac{1}{100}\right)\)

\(A=\frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{99}-\frac{1}{100}\right)< \frac{1}{2}.\left(1+\frac{1}{2}\right)=\frac{3}{4}\)