Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\sqrt{26+15\sqrt{3}}=\sqrt{\dfrac{52+30\sqrt{3}}{2}}=\sqrt{\dfrac{\left(3\sqrt{3}+5\right)^2}{2}}=\dfrac{5+3\sqrt{3}}{\sqrt{2}}\)
2/ Xem lại đề nhé: \(\sqrt{21-4\sqrt{5}}\) thì được
3/ \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}=\dfrac{\sqrt{48-12\sqrt{7}}}{2}-\dfrac{\sqrt{48+12\sqrt{7}}}{2}\)
\(=\dfrac{\sqrt{\left(\sqrt{42}-\sqrt{6}\right)^2}}{2}-\dfrac{\sqrt{\left(\sqrt{42}+\sqrt{6}\right)^2}}{2}=\dfrac{-2\sqrt{6}}{2}=-\sqrt{6}\)
Những câu còn lại tương tự
@@ cái j mà cân .. cân z ? dùng kí hiệu toán học ghi lại đề đi bạn ở góc phía bên trái đó
Đặt \(x=\sqrt[3]{n+\sqrt{n^2+8}}\)và \(y=\sqrt[3]{n-\sqrt{n^2+8}}\). Ta có:
\(\hept{\begin{cases}x+y=8\\x.y=-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4+3\sqrt{2}\\y=4-3\sqrt{2}\end{cases}}\)hoăc \(\hept{\begin{cases}x=4-3\sqrt{2}\\y=4+3\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt[3]{n+\sqrt{n^2+8}}=4+3\sqrt{2}\\\sqrt[3]{n-\sqrt{n^2+8}}=4-3\sqrt{2}\end{cases}}\)hoặc \(\Leftrightarrow\hept{\begin{cases}\sqrt[3]{n+\sqrt{n^2+8}}=4-3\sqrt{2}\\\sqrt[3]{n-\sqrt{n^2+8}}=4+3\sqrt{2}\end{cases}}\)
\(\Leftrightarrow x=280\)
Cái này không LATEX đc, đề là:
Tìm tất cả số nguyên dương n thỏa mãn:
\2^n+n|8^n+n\
Đặt \(A=n\left(n+1\right)\left(n+7\right)\left(n+8\right)\)
\(=\left(n^2+8n\right)\left(n^2+8n+7\right)\) (1)
Đặt \(t=n^2+8n\) Vì n > 0 nên t > 0
Vì A là số chính phương đặt A=k2 \(\left(k\in N\right)\) Vì t>0 => k > 0
(1) \(\Rightarrow\) \(t\left(t+7\right)=k^2\)
\(\Leftrightarrow4t^2+28t-4k^2=0\)
\(\Leftrightarrow\left(4t^2+28t+49\right)-4k^2-49=0\)
\(\Leftrightarrow\left(2t+7\right)^2-\left(2k\right)^2=49\)
\(\Leftrightarrow\left(2t+7-2k\right)\left(2t+7+2k\right)=49\)
Xét các ước của 49 với chú ý rằng \(2t+7-2k< 2t+7+2k\) vì k > 0 từ đó dễ dàng tìm được t
Sau đó ta tìm được các giá trị của n.
a) \(2^{n+3}=8^2.16^2\)
\(2^{n+3}=\left(2^3\right)^2.\left(2^4\right)^2\)
\(2^{n+3}=2^6.2^8\)
\(2^{n+3}=2^{14}\)
\(\Rightarrow n+3=14\Rightarrow n=11\)
b)\(2017^{n-3}=1\)
\(2017^{n-3}=2017^0\)
\(\Rightarrow n-3=0\Rightarrow n=3\)