\(^{17}\) . 81\(^{11}\) ) : ( 27\(^{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

\(\dfrac{3^{17}.81^{11}}{27^{10}.9^{15}}=\dfrac{3^{17}.\left(3^4\right)^{11}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{17}.3^{44}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

Vậy...............

Chúc bạn học tốt!!!

12 tháng 8 2017

\(\dfrac{3^{17}.81^{11}}{27^{10}.9^{15}}=\dfrac{3^{17}.\left(3^4\right)^{11}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{17}.3^{44}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

8 tháng 8 2017

\(\frac{2^{15}.9^4}{6^3.8^3}\)=\(\frac{2^{15}.\left(3^2\right)^3}{\left(2.3\right)^3.\left(2^3\right)^3}\)=\(\frac{2^{15}.3^6}{2^3.3^3.2^9}\)=\(\frac{2^{15}.3^6}{2^{12}.3^3}\)=\(2^3.3^3\)=8.27=216

4 tháng 7 2018

đề bài là gì vậy bạn

16 tháng 10 2018

\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)

\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(B=1-\left(\dfrac{1}{2}\right)^{99}\)

\(2,\)

\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)

\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)

\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)

\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)

\(=\dfrac{3^5.2^{10}}{5^{20}}\)

\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)

\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)

\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)

\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

\(3,\)

\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)

\(b,\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)

\(c,5^{x+2}=628\)

\(5^{x+2}=5^4\)

\(\Rightarrow x+2=4\)

\(\Rightarrow x=4-2=2\)

Vậy \(x=2\)

\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)

Vậy \(x\in\left\{0;1;2\right\}\)

16 tháng 10 2018

Bài 1:

B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)

2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)

2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)

⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)

B= 1

Vậy B=1

Bài 2:

a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)

b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)

c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)

d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)

Bài 3:

a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)

\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)

\(2x+4=\dfrac{1}{2}\)

\(2x=\dfrac{1}{2}-4\)

\(2x=-\dfrac{7}{2}\)

\(x=-\dfrac{7}{2}:2\)

\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)

\(x=-\dfrac{7}{4}\)

b, \(\left(2x-3\right)^2=36\)

\(\left(2x-3\right)^2=6^2\)

\(2x-3=6\)

\(2x=9\)

\(x=\dfrac{9}{2}\)

c, \(5^{x+2}=625\)

\(5^{x+2}=5^4\)

\(x+2=4\)

\(x=2\)

4 tháng 9 2020

a) Ta có :

\(\hept{\begin{cases}27^{11}=\left(3^3\right)^{11}=3^{33}\\81^8=\left(3^4\right)^8=3^{32}\end{cases}}\)

Vì 333 > 332

=> 2711 > 818

b) Ta có:

\(\hept{\begin{cases}2^{225}=\left(2^3\right)^{75}=8^{75}\\3^{150}=\left(3^2\right)^{75}=9^{75}\end{cases}}\)

Vì 875 < 975

=> 2225 < 3150

Thôi còn lại bn tự làm nốt nha . Nhìn mà nản !!

4 tháng 9 2020

a) \(\hept{\begin{cases}27^{11}=\left(3^3\right)^{11}=3^{33}\\81^8=\left(3^4\right)^8=3^{32}\end{cases}}\)

333 > 332 => 2711 > 818

b) \(\hept{\begin{cases}2^{225}=\left(2^3\right)^{75}=8^{75}\\3^{150}=\left(3^2\right)^{75}=9^{75}\end{cases}}\)

875 < 975 => 2225 < 3150

c) \(\hept{\begin{cases}2^{500}=\left(2^5\right)^{100}=32^{100}\\5^{200}=\left(5^2\right)^{100}=25^{100}\end{cases}}\)

32100 > 25100 => 2500 > 5200

d) \(\hept{\begin{cases}625^5=\left(5^4\right)^5=5^{20}\\125^7=\left(5^3\right)^7=5^{21}\end{cases}}\)

520 < 521 => 6255 < 1257

e) \(\hept{\begin{cases}5^{100}=\left(5^4\right)^{25}=625^{25}\\8^{75}=\left(8^3\right)^{25}=512^{25}\end{cases}}\)

62525 > 51225 => 5100 > 875

f) \(2^{16}=2^3\cdot2^{13}=8\cdot2^{13}\)

7 < 8 => 7.213 < 8.213 => 7.213 < 216

g) Ta có \(\frac{27^{50}}{240^{30}}=\frac{\left(3^3\right)^{50}}{3^{30}\cdot80^{30}}=\frac{3^{150}}{3^{30}\cdot80^{30}}=\frac{3^{120}}{80^{30}}=\frac{\left(3^4\right)^{30}}{80^{30}}=\frac{81^{30}}{80^{30}}\)

Vì 8130 > 8030 => 8130/8030 > 1 => 2750/24030 > 1 => 2750 > 24030

h) Ta có \(\hept{\begin{cases}63^9< 64^9=\left(2^6\right)^9=2^{54}\left(1\right)\\16^{14}=\left(2^4\right)^{14}=2^{56}< 17^{14}\left(2\right)\end{cases}}\)

Từ (1) và (2) => 639 < 254 < 256 < 1714

=> 639 < 1714

29 tháng 11 2016

3^12.(3^4)^11/(3^3)^10.(3^2)^15=3^12.3^44/3^30.3^30=3^56/3^30

29 tháng 11 2016

=3^17.9^22/3^30.9^15=9^7/3^13=3^14/3^13=3^1=3

giùm nhé bạn

22 tháng 6 2015

a/ \(\left(-0,125\right)^3:80^4=-\frac{1}{512}.80^4=-80000\)

b/ \(\frac{81^{11}.3^{17}}{27^{10}.9^{15}}=3\)

22 tháng 6 2015

a, ( - 0, 125)^3 . 80^ 4 

   \(\left(-\frac{1}{8}\right)^3.80^4=\frac{-1^3}{8^3}\cdot8^4\cdot10^4\)  = \(-8\cdot10^4=-8.1000=-8000\)

b,\(\frac{81^{11}.3^{17}}{27^{10}.9^{15}}=\frac{3^{4.11}.3^{17}}{3^{3.10}.3^{2.15}}=\frac{3^{44}.3^{17}}{3^{30}.3^{30}}=\frac{3^{44+17}}{3^{30+30}}=\frac{3^{61}}{3^{60}}=3\)

18 tháng 9 2017

317.8111/2710.915

=317.(34)11/(33)10.(32)15

=317.344/330.330

=361/360

=3

18 tháng 9 2017

\(\frac{3^{17}.81^{11}}{27^{10}.9^{15}}=\frac{3^{17}.\left(3^4\right)^{11}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\frac{3^{17}.3^{41}}{3^{30}.3^{30}}=\frac{3^{17+41}}{3^{30+30}}=\frac{3^{58}}{3^{60}}=\frac{1}{3^2}=\frac{1}{9}\)

nho k day