K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2016

3100 + 4100 < 5100

2 tháng 5 2016

3100 + 4100 < 5100

6 tháng 3 2016

Ta có\(10A=\frac{100^{100}+1}{100^{100}+10}=\frac{100^{100}+1}{100^{100}+1+9}=\frac{100^{100}+1}{1+9}\)

\(10B=\frac{100^{98}+1}{100^{98}+10}=\frac{100^{98}+1}{100^{98}+1+9}=\frac{100^{98}+1}{1+9}\)

\(\frac{100^{100}+1}{1+9}>\frac{100^9+1}{1+9}\)

=>10A>10B

=>A>B

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

a/

$A-3=\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}-3$

$=(1-\frac{1}{2004})+(1-\frac{1}{2005})+(1+\frac{2}{2003})-3$

$=\frac{2}{2003}-\frac{1}{2004}-\frac{1}{2005}$

$=(\frac{1}{2003}-\frac{1}{2004})+(\frac{1}{2003}-\frac{1}{2005})$

$>0+0=0$

$\Rightarrow A>3$

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

b/

$B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}$

$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}$

$=1-\frac{1}{2015}<1$

22 tháng 6 2018

Bài 1 \(a)5^{36}=(5^3)^{12}=125^{12}\)

         \(11^{24}=(11^2)^{12}=121^{12}\)

Vì 125 > 121 nên \(5^{36}>11^{24}\)

           \(b)21^{15}=(3\cdot7)^{15}=3^{15}\cdot7^{15}\)

                 \(27^5\cdot49^8=(3^3)^5\cdot(7^2)^8=3^{15}\cdot7^{16}\)

       Vì 15 < 16 nên \(3^{15}\cdot7^{15}< 3^{15}\cdot7^{16}\)

       hay : \(21^{15}< 27^5\cdot49^8\)

Bài 2 tự làm

Chúc bạn học tốt

23 tháng 10 2021

\(3,1+5^2+5^4+...+5^{26}\)

\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)

\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)

\(=26+5^4.26+...+5^{24}.26\)

\(=26\left(5^4+...+5^{24}\right)\)

Vì  \(26⋮26\)

\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)

\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)

23 tháng 10 2021

\(4,1+2^2+2^4+...+2^{100}\)

\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)

\(=21+2^6.21...+2^{98}.21\)

\(=21\left(2^6+...+2^{98}\right)\)

Có : \(21\left(2^6+...+2^{98}\right)⋮21\)

\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)

1 tháng 12 2015

papa ko làm thì thui z 2`

a) Đặt A = 1 + 2 + 22 + 23 ...+299 + 2100

2A = 2 + 22 + 23 + 24 + ... + 2100 + 2101

2A - A = 2 + 22 + 23 + 24 + ... + 2100 + 2101 - 1 + 2 + 22 + 23 ...+299 + 2100

A = 21001 - 1 < 2101

Vậy A < 2101

câu b tính trong ngoặc sau đó tính x như thường

1 tháng 12 2015

bài này dễ mà. tớ nhắm mắt đọc cũng được

2 tháng 2 2017

vì A và B đều có 1 nên ta bỏ 1 đi

Ta có : 100^100-100^99=9000......00000( tổng cộng có 198 số 0)

\(\frac{1}{100^{98}}=\frac{100}{100^{99}}\)nên \(\frac{1}{100^{99}}-\frac{1}{100^{98}}=\frac{-99}{100^{99}}\)

nhưng 900....000( 198 số 0) lớn hơn \(\frac{-99}{100^{99}}\)

=>A>B