Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A E C 30 o
Bài làm
a) Vì BA là đường cao của tam giác BCE (BA | EC)
Mà BE là đường trung tuyến của tam giác BCE (AE = AC)
=> Tam giác BCE cân tại B (1)
Mà ta có: \(\widehat{ABC}+\widehat{C}=90^0\)
hay \(30^0+\widehat{C}=90^0\Rightarrow\widehat{C}=60^0\) (2)
Từ (1) và (2) => Tam giác BCE đều
b) Ta có: A là trung điểm của EC (AE = EC)
=> \(AC=\frac{1}{2}EC\)
Mà EC = BC (Tam giác BCE đều)
=> \(AC=\frac{1}{2}BC\)(đpcm)
Từ \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
Lại có : \(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)
Chúc bạn học tốt !!!
\(\frac{a+5}{a-5}=\frac{b+6}{b-6}\)
\(\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(b+6\right)\left(a-5\right)\)
\(\Leftrightarrow ab-6a+5b-30=ab-5b+6a-30\)
\(\Leftrightarrow ab-6a+5b-30-ab+5b-6a+30=0\)
\(\Leftrightarrow\left(ab-ab\right)-\left(6a+6a\right)+\left(5b+5b\right)-\left(30-30\right)=0\)
\(\Leftrightarrow10b-12a=0\)
\(\Leftrightarrow10b=12a\)
\(\Leftrightarrow\frac{a}{10}=\frac{b}{12}\)
\(\Leftrightarrow\frac{a}{5}=\frac{b}{6}\)
\(\Leftrightarrow\frac{a}{b}=\frac{5}{6}\left(đpcm\right)\)
Có: \(\frac{a+c}{b+d}=\frac{2a-c}{2b-d}\)
\(\Leftrightarrow\left(a+c\right)\left(2b-d\right)=\left(b+d\right)\left(2a-c\right)\)
\(\Leftrightarrow2ab-ad+2bc-cd=2ab-bc+2ad-cd\)
\(\Leftrightarrow bc=ad\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Ta có :
\(\frac{a+c}{b+d}=\frac{2a-c}{2b-d}\)
=> ( a + c )( 2b - d) = ( b + d)( 2a - c)
=> 2ab - ad + 2bc - cd = 2ab - bc + 2ad - cd
=> ( 2ab - 2ab ) + ( 2bc + bc ) = ( 2ad + ad ) + ( - cd + cd )
=> 3bc = 2ad
=> bc = ad
=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)