\(^{x^2+4x}\) trên \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2019

a/ ĐKXĐ: \(x\ne-1\)

Giả sử x1> x2

\(\Rightarrow f\left(x_1\right)=\frac{x_1}{x_1+1};f\left(x_2\right)=\frac{x_2}{x_2+1}\)

\(f\left(x_1\right)-f\left(x_2\right)=\frac{x_1}{x_1+1}-\frac{x_2}{x_2+1}\)

\(=\frac{x_1x_2+x_1-x_1x_2-x_2}{\left(x_1+1\right)\left(x_2+2\right)}=\frac{x_1-x_2}{\left(x_1+1\right)\left(x_2+1\right)}\)

Xét trên khoảng \(\left(-\infty;1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+1>0\\x_2+1>0\end{matrix}\right.\Rightarrow\left(x_1+1\right)\left(x_2+1\right)>0\)

\(x_1>x_2\Rightarrow x_1-x_2>0\Rightarrow f\left(x_1\right)-f\left(x_2\right)>0\)

=> hàm số đồng biến trên \(\left(-\infty;1\right)\)

làm tương tự trên khoảng \(\left(-1;+\infty\right)\)

b/ \(ĐKXĐ:x\ne2\)

Giả sử x1> x2

\(f\left(x_1\right)-f\left(x_2\right)=\frac{2x_1+3}{2-x_1}-\frac{2x_2+3}{2-x_2}\)

\(=\frac{4x_1-2x_1x_2+6-3x_2-4x_2+2x_1x_2-6+3x_1}{\left(2-x_1\right)\left(2-x_2\right)}\)

\(=\frac{7x_1-7x_2}{\left(2-x_1\right)\left(2-x_2\right)}\)

Xét trên khoảng \(\left(-\infty;2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2-x_1>0\\2-x_2>0\end{matrix}\right.\Rightarrow\left(2-x_1\right)\left(2-x_2\right)>0\)

\(x_1>x_2\Rightarrow7x_1-7x_2>0\)

\(\Rightarrow f\left(x_1\right)-f\left(x_2\right)>0\)

=> hàm số đồng biến trên \(\left(-\infty;2\right)\)

làm tương tự trên \(\left(2;+\infty\right)\)

c/ Có \(-\frac{b}{2a}=-1\)

Mà a=1>0 => hàm số đồng biến trên \(\left(-1;+\infty\right)\) , nghịch biến trên \(\left(-\infty;-1\right)\)

d/ \(-\frac{b}{2a}=1\)

Mà a= -1>0 => hàm số đồng biến trên \(\left(-\infty;1\right)\) , nghịch biến trên \(\left(1;+\infty\right)\)

NV
15 tháng 5 2020

ĐKXĐ: \(x\ne1\)

\(\Leftrightarrow\left|2x-1\right|>2\left|x-1\right|\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-2\right)^2>0\)

\(\Leftrightarrow4x-3>0\)

\(\Rightarrow x>\frac{3}{4}\)

\(\Rightarrow x\in\left(\frac{3}{4};1\right)\cup\left(1;+\infty\right)\)

Chẳng đáp án nào đúng cả :)

2 tháng 8 2018

1)\(\forall x1,x2\in\left(1,+\infty\right),x1\ne x2\)

\(f\left(x1\right)-f\left(x2\right)=\dfrac{1}{1-x1}-\dfrac{1}{1-x2}=\dfrac{1-x2-1+x1}{\left(1-x1\right)\left(1-x2\right)}=\dfrac{x1-x2}{\left(1-x1\right)\left(1-x2\right)}\)

\(\dfrac{f\left(x1\right)-f\left(x2\right)}{x1-x2}=\dfrac{\dfrac{x1-x2}{\left(1-x1\right)\left(1-x2\right)}}{x1-x2}=\dfrac{1}{\left(1-x1\right)\left(1-x2\right)}\)

\(x1,x2\in\left(1;+\infty\right)\)nên \(\left\{{}\begin{matrix}x1>1\\x2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-x1< 0\\1-x2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{\left(1-x1\right)\left(1-x2\right)}>0\)

Vậy hàm số đồng biến trên \(\left(1;+\infty\right)\)

17 tháng 10 2019

Mọi người giải thích chi tiết cho em với ạ.Em cảm ơn

18 tháng 10 2019

y xác định khi :

X3 - 1 \(\ne\)0

=> X \(\ne\)1.

Vậy TXD : D =R\ {1} hay D = (-\(\infty\);1) \(\cup\)( 1 ; + \(\infty\))

10 tháng 3 2022

d

12 tháng 4 2017

a) hệ số a=-2=>y luôn nghịch biến

b) a=1 >0 và -b/2a =-5 => (-5;+vc) y luôn đồng biến

c) hàm y có dạng y=a/(x+1)

a =-1 => y đồng biến (-vc;-1) nghich biến (-1;+vc

=>

(-3;-2) hàm y đồng biến

(2;3) hàm y đồng biến

26 tháng 4 2017

a) Hàm số \(y=-2x+3\) có a = -2 < 0 nên hàm số nghịch biến trên R.
b. Xét tỉ số \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\left(x^2_1+10x_1+9\right)-\left(x^2_2+10x_2+9\right)}{x_1-x_2}\)
\(=\dfrac{\left(x_1-x_2\right)\left(x_1+x_2+10\right)}{x_1-x_2}=x_1+x_2+10\).
Với \(x_1;x_2\notin\left(-5;+\infty\right)\) thì \(x_1+x_2+10\ge0\) nên hàm số y đồng biến trên \(\left(-5;+\infty\right)\).
c) Xét tỉ số: \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}}{x_1-x_2}=\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}\)
Trên \(\left(-3;-2\right)\) thì \(\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}< 0\) nên hàm số y nghịch biến trên \(\left(-3;-2\right)\).
Trên \(\left(2;3\right)\) thì \(\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}>0\) nên hàm số y đồng biến trên \(\left(2;3\right)\).

4 tháng 10 2020

b, Lấy \(x_1;x_2\in\left(-\infty;2\right)\left(x_1\ne x_2\right)\)

\(\Rightarrow y_1=\frac{3}{2-x_1};y_2=\frac{3}{2-x_2}\)

\(\Rightarrow y_1-y_2=\frac{3}{2-x_1}-\frac{3}{2-x_2}=\frac{3\left(2-x_2-2+x_1\right)}{\left(2-x_1\right)\left(2-x_2\right)}=\frac{3\left(x_1-x_2\right)}{\left(2-x_1\right)\left(2-x_2\right)}\)

\(\Rightarrow\frac{y_1-y_2}{x_1-x_2}=\frac{3}{\left(2-x_1\right)\left(2-x_2\right)}\)

Do \(x_1;x_2\in\left(-\infty;2\right)\Rightarrow\left(2-x_1\right)\left(2-x_2\right)>0\)

\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=\frac{3}{\left(2-x_1\right)\left(2-x_2\right)}>0\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left(-\infty;2\right)\)

Lấy \(x_1;x_2\in\left(2;+\infty\right)\left(x_1\ne x_2\right)\)

\(\Rightarrow y_1=\frac{3}{2-x_1};y_2=\frac{3}{2-x_2}\)

\(\Rightarrow y_1-y_2=\frac{3}{2-x_1}-\frac{3}{2-x_2}=\frac{3\left(2-x_2-2+x_1\right)}{\left(2-x_1\right)\left(2-x_2\right)}=\frac{3\left(x_1-x_2\right)}{\left(2-x_1\right)\left(2-x_2\right)}\)

\(\Rightarrow\frac{y_1-y_2}{x_1-x_2}=\frac{3}{\left(2-x_1\right)\left(2-x_2\right)}\)

Do \(x_1;x_2\in\left(-\infty;2\right)\Rightarrow\left(2-x_1\right)\left(2-x_2\right)>0\)

\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=\frac{3}{\left(2-x_1\right)\left(2-x_2\right)}>0\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left(2;+\infty\right)\)

4 tháng 10 2020

a, Lấy \(x_1;x_2\in\left(-\infty;-1\right)\left(x_1\ne x_2\right)\)

\(\Rightarrow y_1=\frac{4}{x_1+1};y_2=\frac{4}{x_2+1}\)

\(\Rightarrow y_1-y_2=\frac{4}{x_1+1}-\frac{4}{x_2+1}=\frac{4\left(x_2+1-x_1-1\right)}{\left(x_1+1\right)\left(x_2+1\right)}=-\frac{4\left(x_1-x_2\right)}{\left(x_1+1\right)\left(x_2+1\right)}\)

\(\Rightarrow\frac{y_1-y_2}{x_1-x_2}=-\frac{4}{\left(x_1+1\right)\left(x_2+1\right)}\)

Do \(x_1;x_2\in\left(-\infty;-1\right)\Rightarrow\left(x_1+1\right)\left(x_2+1\right)>0\)

\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=-\frac{4}{\left(x_1+1\right)\left(x_2+1\right)}< 0\)

\(\Rightarrow\) Hàm số nghịch biến trên \(\left(-\infty;-1\right)\)

Lấy \(x_1;x_2\in\left(-1;+\infty\right)\left(x_1\ne x_2\right)\)

\(\Rightarrow y_1=\frac{4}{x_1+1};y_2=\frac{4}{x_2+1}\)

\(\Rightarrow y_1-y_2=\frac{4}{x_1+1}-\frac{4}{x_2+1}=\frac{4\left(x_2+1-x_1-1\right)}{\left(x_1+1\right)\left(x_2+1\right)}=-\frac{4\left(x_1-x_2\right)}{\left(x_1+1\right)\left(x_2+1\right)}\)

\(\Rightarrow\frac{y_1-y_2}{x_1-x_2}=-\frac{4}{\left(x_1+1\right)\left(x_2+1\right)}\)

Do \(x_1;x_2\in\left(-1;+\infty\right)\Rightarrow\left(x_1+1\right)\left(x_2+1\right)>0\)

\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=-\frac{4}{\left(x_1+1\right)\left(x_2+1\right)}< 0\)

\(\Rightarrow\) Hàm số nghịch biến trên \(\left(-\infty;-1\right)\)

27 tháng 9 2019

B