K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

mà cái này là toán lớp 1 ak

30 tháng 10 2021

đây là toán lớp 1 à:)

8 tháng 11 2021

bạn đã chọn gửi toán lớp 1 thì bạn không được hỏi những câu hỏi ko phải toán lớp 1 nhé

8 tháng 11 2021

không đăng linh tinh

8 tháng 11 2021

tào lao

21 tháng 11 2021

đây mà là toán lớp 1 á bọn chị họ lớp 3 mà còn chưa học đây này

26 tháng 11 2021

toán lớp 1 đây á

26 tháng 11 2021

lop1 :))))))))

bi

6 tháng 11 2021

Đây mà là toán lớp 1 á hả????????/

6 tháng 11 2021

đúng rùi , toán  lớp 1 nâng cao thành toán cấp 2 ,3

8 tháng 11 2021

đây là toán lớp 1 à?

8 tháng 11 2021

não lớp 5 (me) khi nhìn bài này kiểu : (banh não)

8 tháng 11 2021

dạng toán của lớp 1 à 

12 tháng 6 2019

Dễ thấy \(2^x=y^2-153\)có Vế phải luôn nguyên nên \(2^x\in Z\Rightarrow x\in N\)

\(2^x+12^2=y^2-3^2\Leftrightarrow2^x+153=y^2.\)(1)

Nếu x là số lẻ , khi đó \(2^x+153\)chia  3 dư 2 ( Vì 153 chia hết cho 3 ,và \(2^x\)với x là lẻ thì luôn chia 3 dư 2)

                                    \(y^2\)chia cho 3 dư 0 hoặc dư 1 (cái này là theo tính chất chia hết của số chính phương)

Như vậy 2 vế của (1) mâu thuẫn => x không thể là số lẻ. Vậy x là số chẵn.

Đặt \(x=2k\left(k\in N\right)\), ta có:

\(2^{2k}+153=y^2\Leftrightarrow y^2-\left(2^k\right)^2=153\)

\(\Leftrightarrow\left(y-2^k\right)\left(y+2^k\right)=153.\)

Nhận thấy \(y-2^k\le y+2^k\left(dok\in N\right)\)và \(y-2^k;y+2^k\)đều là các số nguyên

Mà 153=9.17=(-17).(-9)=3.51=(-51).(-3)=1.153=(-153).(-1)  suy ra xảy ra 6 trường hợp:

\(\hept{\begin{cases}y-2^k=9\\y+2^k=17\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\2^k=4\end{cases}\Leftrightarrow.}\hept{\begin{cases}k=2\\y=13\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=13\end{cases}\left(tm\right).}}\)

\(\hept{\begin{cases}y-2^k=-17\\y+2^k=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-13\\2^k=4\end{cases}\Leftrightarrow}\hept{\begin{cases}k=2\\y=-13\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-13\end{cases}}\left(tm\right).}\)

\(\hept{\begin{cases}y-2^k=3\\y+2^k=51\end{cases}\Leftrightarrow\hept{\begin{cases}y=27\\2^k=24\end{cases}}}\)(vì không có k nguyên nào để \(2^k=24\)) => loại

\(\hept{\begin{cases}y-2^k=-51\\y+2^k=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-27\\2^k=24\end{cases}\left(loại\right).}\)

\(\hept{\begin{cases}y-2^k=-153\\y+2^k=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-77\\2^k=76\end{cases}}\)(vì không có k nguyên nào để \(2^k=76\)) => loại

\(\hept{\begin{cases}y-2^k=1\\y+2^k=153\end{cases}\Leftrightarrow}\hept{\begin{cases}y=77\\2^k=76\end{cases}\left(loại\right)}\)

Vậy các nghiệm nguyên của phương trình đã cho là \(\left(x,y\right)=\left(4;13\right),\left(4;-13\right).\)

13 tháng 6 2019

mnb,.mnbhgvjbnmkjlbh nkjnb mhjnugvhjygftyuygyh

16 tháng 11 2021

đề bài đâu